
 

 

1. Discrete-Time Signals and Systems. Summary 
 

1.1. Discrete-Time Signals and Systems. Basic Definitions 
 
1.1.1. Discrete and Digital Signals  
 
 
1.1.1.1. Basic Definitions 

Signals may be classified into four categories depending on the characteristics of the time-variable and 
values they take:  
 

Signals Time Descriptions Notes 
Continuous-time 
(analogue) 

Defined for every 
value of time 

Functions of a continuous 
variable f t( )  

They take on values in the continuous 
interval ( , )a b , 
a b, → ∞  

Discrete-time Defined only at 
discrete values of 
time 

Sequences of real or complex 
numbers,   
f nT f n( ) ( )=  

 

They take on values in the continuous 
interval ( , )a b , 
a b, → ∞  
Sampling process 
Sampling interval, period: T  
Sampling rate: samples per second 
Sampling frequency (Hz): f TS = 1 /  

 
Signals Value Descriptions Notes 

Continuous-valued  They can take all 
possible values on 
finite or infinite range  

Functions of a continuous 
variable or sequences of 
numbers 

Defined for every value of time or  
Only at discrete values of time 

Discrete-valued They can take on 
values from a finite set 
of possible values  

Functions of a continuous 
variable or sequences of 
numbers 

Defined for every value of time or  
only at discrete values of time 

 
Digital filter theory:  
 
Signals Definition and description  Notes  
Discrete-time Defined only at discrete values of time and they can 

take all possible values on finite or infinite range. 
Sequences of  real or complex numbers. 

Sampling process 

Digital Discrete-time and discrete-valued signals (i.e. discrete -
time signals taking on values from a finite set of 
possible values) 

Sampling, quantizing and coding  process 
i.e. analogue-to-digital conversion 

 
 
1.1.1.2. Discrete-Time Signal Representations 
 
A. Functional representations: 
 

x n
for n
for n
elsewhere

( )
,

=
=
=









1 1 3
6 2
0

 

 
 
 
 



 

 

B. Tabular representation: 
 

n  ... -2 -1 0  1 2 ... 
x n( )  ... 0 1.3 2.8 -1.0 -0.4 ... 

 
C. Sequence representation: 
 

{ }x n( ) . . . .= − −… …0 13 2 8 10 0 4  
 
D. Graphical representation: 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
1.1.1.3. Some Elementary Discrete-Time Signals 
 
A. Unit sample sequence (unit sample, unit impulse, unit impulse signal) 
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for n
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=
≠





1 0
0 0

 

 
 
 
 
B. Unit step signal (unit step, Heavisede step sequence) 
 

u n
for n
for n( ) =

≥
<





1 0
0 0

 

 
 
 
 
 
 
 
C. Complex-valued exponential signal (complex sinusoidal sequence, complex phasor, complex-valued function) 
 

x n e j t( ) = ω  where ω , t R∉ and j = − 1  (imaginary unit) 

x n( ) = 1 and [ ]arg ( )x n t= ω  
 
 

( )x n

n



 

1.1.2. Discrete-Time System. Definition  
A discrete-time system is a device or algorithm that operates on a discrete signal called the input or 

excitation, according to some rule to produce another discrete-time signal called the output or response.       
 

We say that the input signal x t( )  is transformed by the system into a signal y t( )  and express the general 
relationship between  x t( )  and y t( )  as   
 

[ ]y n H x n( ) ( )≡  
 
where the symbol denotes the transformation H[.] (also called operator or mapping) or processing performed by the 
system on x n( )  to produce y n( ) .  
 
The input-output description of a discrete-time system consists of a mathematical expressions or rules, which 
explicitly done the relations between the input and output signals (so-called input-output relationships). The system 
can be assumed to be a “black box” to the user.  
 
Input-output relationship description: 
 

[ ]y n H x n( ) ( )≡  
 

x n y nH( ) ( ) →  
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.1.3. Classification of Discrete-Time Systems 
1.1.3.1. Static vs. Dynamic Systems. Definition  
 A discrete-time system is called static or memoryless if its output at any instant n  depends at most on the 
input sample at the same time, but not past or future samples of the input. In the other case, the system is said to be 
dynamic or to have memory.  
 
If the output of a system  at time n  is completely determined by the input samples in the interval from n N−  to n  
( N ≥ 0 ), the system is said to have memory of duration N . 
 
If  N = 0 , the system is static or memoryless.  
If  0 < < ∞N , the system is said to have finite memory. 
If  N → ∞ , the system is said to have infinite memory. 
 
 

( ) ( )Hx n y n→

( )x n ( )y n

input signal

excitation

output signal

response
[ ]( ) ( )y n H x n≡

[ ].H

discrete-time 
system



 

 

Examples: 
 

The static (memoryless) system: y n nx n bx n( ) ( ) ( )= + 3  
 
The dynamic system with finite memory: 
 

y n nx n bx n( ) ( ) ( )= + −3 1     y n h k x n k
k

N
( ) ( ) ( )= −∑

=0
 

 
The dynamic system with infinite memory: 
 

y n h k x n k
k

( ) ( ) ( )= −∑
=

∞

0
 

 
1.1.3.2. Time-Invariant vs. Time-Variable Systems. Definition  

A discrete-time system is called time-invariant if its input-output characteristics do not change with time. In 
the other case, the system is called time-variant.  
 

Definition. A relaxed system H[.]  is time-invariant or shift-invariant if only if  x n y nH( ) ( ) →    implies that    

x n k y n kH( ) ( )−  → −  for every input signal x n( )  and every time shift k . 
 
Examples: 
 
The time-invariant system:  
 

y n x n bx n( ) ( ) ( )= + 3     y n h k x n k
k

N
( ) ( ) ( )= −∑

=0
 

 
The time-variant system:  
 

y n nx n bx n( ) ( ) ( )= + −3 1       y n h k x n kN n
k

N
( ) ( ) ( )= −∑ −

=0
 

 
1.1.3.3. Linear vs. Non-linear Systems. Definition  

A discrete-time system is called linear if it satisfies the linear superposition principle. In the other case, the 
system is called non-linear.  
 
Definition. A relaxed system H[.]  is linear if only if 
 

[ ] [ ] [ ]H a x n a x n a H x n a H x n1 1 2 2 1 1 2 2( ) ( ) ( ) ( )+ = +  
 
for any arbitrary input sequences x n1( )  and x n2 ( ) , and any arbitrary constants a1 and a2 . 
 
The multiplicative (scaling) property of a linear system:  
 

[ ] [ ]H a x n a H x n1 1 1 1( ) ( )=  
 
The additivity property of a linear system:  
 



 

 

[ ] [ ] [ ]H x n x n H x n H x n1 2 1 2( ) ( ) ( ) ( )+ = +  
 
Examples: 
 
The linear system:  
 

y n h k x n k
k

N
( ) ( ) ( )= −∑

=0
    y n x n bx n k( ) ( ) ( )= + −2  

 
The non-linear system:  
 

y n nx n bx n( ) ( ) ( )= + −3 1         y n h k x n k x n k
k

N
( ) ( ) ( ) ( )= − − +∑

=
1

0
 

 
1.1.3.4. Causal vs. Noncausal Systems. Definition 
 Definition. A system is said to be causal if the output of the system at any time n  (i.e., y n( ) ) depends 
only on present and past inputs (i.e., x n x n x n( ), ( ), ( ),− −1 2 … ). In mathematical terms, the output of a causal 
system satisfies an equation of the form 
 

[ ]y n F x n x n x n( ) ( ), ( ), ( ),= − −1 2 "  
 
where is F[.]some arbitrary function. 
 
If a system does not satisfy this definition, it is called noncausal. 
 
Examples: 
 
The causal system:  
 

y n h k x n k
k

N
( ) ( ) ( )= −∑

=0
   y n x n bx n k( ) ( ) ( )= + −2  

 
The noncausal system:  
 

y n nx n bx n( ) ( ) ( )= + + −1 13    y n h k x n k
k

( ) ( ) ( )= −∑
= −10

10
 

 
1.1.3.5.  Stable vs. Unstable of Systems. Definition  
 Definition. An arbitrary relaxed system is said to be bounded input - bounded output (BIBO) stable if and 
only if every bounded input produces the bounded output. It means, that there exist some finite numbers say M x  
and M y , such that  

 

x n M y n Mx y( ) , ( )≤ ≤ ∞ ⇒ ≤ ≤ ∞  

 
for all n . If some bounded input sequence x n( ) , the output is unbounded (infinite); the system is classified as 
unstable.  
 
Examples: 
 
The stable system:  
 



 

 

y n h k x n k
k

N
( ) ( ) ( )= −∑

=0
  y n x n x n k( ) ( ) ( )= + −2 3  

 

The noncausal system:            y n x nn( ) ( )= −3 13  
 
1.1.3.6.  Recursive vs. Nonrecursive Systems. Definitions  
 A system whose output y n( ) at time n depends on any number of the past outputs values y n( )− 1 , 
y n( )− 2 …is called a recursive system. Then, the output of a causal recursive system can be expressed in general 

as  
 

[ ]y n F y n y n y n N x n x n x n M( ) ( ), ( ), , ( ), ( ), ( ), , ( )= − − − − −1 2 1… …  
 
In contrast, if y n( ) at time n depends only on the present and past inputs, then  
 

[ ]y n F x n x n x n M( ) ( ), ( ), , ( )= − −1 …  
 
Such a system is called nonrecursive.  
 
 

1.2. Linear-Discrete Time-Invariant System (LTI) 
 
1.2.1. Time-Domain Representation 
 
1.2.1.1 Impulse Response and Convolution, Convolution Sum 
Unit impulse: δ ( )n  
LTI: H[.]  

(Unit) impulse response: [ ]h n H n( ) ( )= δ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L

V
 
 
 
 
 

TI description by convolution (convolution sum): 

y n h k x n k x k h n k h n x n x n h n
k k

( ) ( ) ( ) ( ) ( ) ( ) * ( ) ( ) * ( )= −∑ = −∑ = =
= −∞

∞

= −∞

∞
 

iewed mathematically, the convolution operation satisfies the commutative law. 

unit impulse [ ].H

discrete-time 
system

( )nδ [ ]( ) ( )h n H nδ=

impulse response



 

 

1.2.1.2. Step Response  
Unit step: u n( )  
LTI: H[.]  

Step response (unit-step response): [ ]g n H u n( ) ( )=  
 
 
 
 
 
 
 
 
 
 
 
 

s

T
 
N

s

 
h
 

y

 
 
1
1
 
 
h
 
T
 

y

 
 
1
 

k
 
 
1

n h k u n k h k
k k

n
( ) ( ) ( ) ( )= −∑ = ∑

= −∞

∞

= −∞
 

his expression relates the impulse response to the step response of the system.  

ote: 

n h k h n h k h n s n
k

n

k

n
( ) ( ) ( ) ( ) ( ) ( )= ∑ = + ∑ = + −

= −∞ = −∞

−1
1  

n s n s n( ) ( ) ( )= − − 1  

[ ]n x k s n k s n k
k

n
( ) ( ) ( ) ( )= − − − −∑

= −∞

−
1

1
 

.2.2. Classification of LTI System 
.2.2.1. Causal LTI Systems 

A relaxed LTI system is causal if and only if its impulse response is zero for negative values of n , i.e.  

n for n( ) = <0 0  

hen for the causal LTI systems is valid:  

n h k x n k x k h n k
k k

n
( ) ( ) ( ) ( ) ( )= −∑ = −∑

=

∞

= −∞0
 

.2.2.2. Stable LTI Systems 
A LTI is stable if its impulse response is absolutely summable, i.e.  

h k( ) 2

= −∞

∞
∑ < ∞  

.2.2.3. Finite Impulse Response (FIR) LDTS and Infinite Impulse Response (IIR) LDTS 

unit step [ ].H

discrete-time 
system

step response

unit-step 
response

( )u n [ ]( ) ( )g n H u n=



 

 

(Causal) FIR LTI systems: y n h k x n k
k

N
( ) ( ) ( )= −∑

=0
 

(IIR) LTI systems: y n h k x n k
k

( ) ( ) ( )= −∑
=

∞

0
 

 
 
1.2.2.4. Recursive and Nonrecursive LTI Systems 
 

Causal nonrecursive LTI: y n h k x n k
k

N
( ) ( ) ( )= −∑

=0
 

Causal recursive LTI: y n b k x n k a k x n k
k

N

k

M
( ) ( ) ( ) ( ) ( )= −∑ − −∑

= =0 1
 

 
LTI systems characterized by Constant-Coefficient Difference Equations  
 
 
 

1.3. Frequency-Domain Representation of Discrete Signals and 
LDTS 
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F

TI system: y n h k x n k
k

( ) ( ) ( )= −∑
= −∞

∞
 

he impulse response: h n( )  

omplex-valued exponential signal: x n e j t( ) = ω  where ω , t R∉ and j = − 1  (imaginary unit) 

TI system output: 

y n h k x n k h k e h k e e e h k e
k

j n k

k

j k j n

k

j n j k

k
( ) ( ) ( ) ( ) ( ) ( )( )= −∑ = ∑ = ∑ = ∑

= −∞

∞ −

= −∞

∞ −

= −∞

∞ −

= −∞

∞ω ω ω ω ω  

y n e H ej n j( ) ( )= ω ω  

requency response:  H e h k ej j k

k
( ) ( )ω ω= ∑ −

= −∞

∞
 

complex-
valued

exponencial
signal

[ ].H

discrete-time 
system

step response

unit-step 
response

( )h n

( ) j tx n e ω=

impulse response

( )y n



 

 

 

H e H e ej j j( ) ( ) ( )ω ω φ ω=  

 

[ ] [ ]H e H e j H ej j j( ) Re ( ) Im ( )ω ω ω= +  

 

H e h k k j h k kj
k k

( ) ( ) cos ( ) sinω ω ω= ∑ − ∑
= −∞

∞

= −∞

∞
 

 

The real component of H e j( )ω : [ ]Re ( ) ( ) cosH e h k kj
k

ω ω= ∑
= −∞

∞
 

The imaginary component of H e j( )ω : [ ]Im ( ) ( ) sinH e j h k kj
k

ω ω= − ∑
= −∞

∞
 

 
 

Magnitude response: [ ] [ ]H e H e H ej j j( ) Re ( ) Im ( )ω ω ω= +
2 2

 

 

Phase response: [ ] [ ]
[ ]φ ω ω

ω

ω( ) arg ( )
Im ( )

Re ( )
= =H e arctg

H e

H e
j

j

j  

  

Group delay function: τ ω
φ ω

ω
( )

( )
= −

d
d

 

 
 
1.3.1. Comments on Relationship Between the Impulse Response and 

Frequency Response 
An important property of   

 

H e h k ej j k

k
( ) ( )ω ω= ∑ −

= −∞

∞
 

 

is that this function is periodic with period 2π  ( H e H ej j k( ) ( )[ ]ω ω π= +2 ). In fact, we may view the previous 

expression as the exponential Fourier series expansion for H e j( )ω , with h k( ) as the Fourier series coefficients. 

Consequently, the unit impulse response h k( )  is related to H e j( )ω through the integral expression 
 

h n H e e dj j n( ) ( )= ∫
−

1
2π

ωω ω

π

π
 

 
 
1.3.2. Comments on Symmetry Properties 

For LTI systems with real-valued impulse response, the magnitude response, phase responses, the real 

component of and the imaginary component of H e j( )ω  possess these symmetry properties: 
 



 

 

The real component of H e j( )ω : [ ] [ ]Re ( ) Re ( )H e H ej j− =ω ω (even function of ω  periodic with period 

2π ) 

The imaginary component of H e j( )ω : [ ] [ ]Im ( ) Im ( )H e H ej j− = −ω ω (odd function of ω  periodic with 

period 2π  

The magnitude response of H e j( )ω : H e H ej j( ) ( )− =ω ω  (even function of ω  periodic with period 2π ) 

The phase response of H e j( )ω : [ ] [ ]arg ( ) arg ( )H e H ej j− −= −ω ω  (odd function of ω  periodic with period 

2π ) 
 
Consequence: 
 

If we known H e j( )ω  and φ ω( )  for 0 ≤ ≤ω π , we can describe these functions ( i.e. also H e j( )ω ) for all 

values of  ω . 
 
 
 
1.3.3. Comments on Fourier Transform of Discrete Signals and Frequency-

Domain Description of LTI Systems 
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fre
 

e input signal x n( ) : X e x k ej j k

k
( ) ( )ω ω= ∑ −

= −∞

∞
, x n X e e dj j n( ) ( )= ∫

−

1
2π

ωω ω

π

π
 

e output signal y n( ) : Y e y k ej j k

k
( ) ( )ω ω= ∑ −

= −∞

∞
, y n Y e e dj j n( ) ( )= ∫

−

1
2π

ωω ω

π

π
 

e impulse response h n( ) : H e h k ej j k

k
( ) ( )ω ω= ∑ −

= −∞

∞
, h n H e e dj j n( ) ( )= ∫

−

1
2π

ωω ω

π

π
 

quency-Domain Description of LTI System: Y e H e X ej j j( ) ( ) ( )ω ω ω=  

.4. Comments on Normalized Frequency 
It is often desirable to express the frequency response of a sequence h n h nT( ) ( )=  in terms of units of 

quency that involve sampling interval T . In this case, the expression  

input signal ( )jH e ω

discrete-time 
system

output signal( )h n

impulse responsefrequency  response

( ), ( )jx n X e ω ( ), ( )jy n Y e ω



 

 

H e h k ej j k

k
( ) ( )ω ω= ∑ −

= −∞

∞
, h n H e e dj j n( ) ( )= ∫

−

1
2π

ωω ω

π

π
 

 
 
are modified to the form: 
 

H e h kT ej T j k T

k
( ) ( )ω ω= ∑ −

= −∞

∞
, h nT

T
H e e dj T j nT

T

T
( ) ( )

/

/
= ∫

−2π
ωω ω

π

π
 

 

H e j T( )ω  is periodic with period  2 2π π/ T F= , where F  is sampling frequency. 
 
Solution: normalized frequency approach: F / 2 →π . 
 
Example: 
 
F kHz= 100 , F kHz/ 2 50= , 50 kHz →π  

f kHz1 20= , ω
π π

π1
20
50

2
5

0 4= = = .  

f kHz2 25= , ω
π π

π2
25
50 2

0 5= = = .  

 
 
Example: 

jω
( )H e

ω
π 2ππ−4π− 3π− 2π− 3π 4π

ω
π 2ππ−4π− 3π− 2π− 3π 4π

Symmetry Properties

( )φ ω
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