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Efficient Implementation
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14.1 Introduction

Many public-key encryption and digital signature schemes, and some hash functions (see
§9.4.3), require computations in Zm, the integers modulom (m is a large positive integer
which may or may not be a prime). For example, the RSA, Rabin, and ElGamal schemes re-
quire efficient methods for performing multiplication and exponentiation in Zm. Although
Zm is prominent in many aspects of modern applied cryptography, other algebraic struc-
tures are also important. These include, but are not limited to, polynomial rings, finite fields,
and finite cyclic groups. For example, the group formed by the points on an elliptic curve
over a finite field has considerable appeal for various cryptographic applications. The effi-
ciency of a particular cryptographic scheme based on any one of these algebraic structures
will depend on a number of factors, such as parameter size, time-memory tradeoffs, process-
ing power available, software and/or hardware optimization, and mathematical algorithms.

This chapter is concerned primarily with mathematical algorithms for efficiently carry-
ing out computations in the underlying algebraic structure. Since many of the most widely
implemented techniques rely on Zm, emphasis is placed on efficient algorithms for per-
forming the basic arithmetic operations in this structure (addition, subtraction, multiplica-
tion, division, and exponentiation).

In some cases, several algorithms will be presented which perform the same operation.
For example, a number of techniques for doing modular multiplication and exponentiation
are discussed in §14.3 and §14.6, respectively. Efficiency can be measured in numerous
ways; thus, it is difficult to definitively state which algorithm is the best. An algorithm may
be efficient in the time it takes to perform a certain algebraic operation, but quite inefficient
in the amount of storage it requires. One algorithm may require more code space than an-
other. Depending on the environment in which computations are to be performed, one algo-
rithm may be preferable over another. For example, current chipcard technology provides
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592 Ch. 14 Efficient Implementation

very limited storage for both precomputed values and program code. For such applications,
an algorithm which is less efficient in time but very efficient in memory requirements may
be preferred.

The algorithms described in this chapter are those which, for the most part, have re-
ceived considerable attention in the literature. Although some attempt is made to point out
their relative merits, no detailed comparisons are given.

Chapter outline

§14.2 deals with the basic arithmetic operations of addition, subtraction, multiplication,
squaring, and division for multiple-precision integers. §14.3 describes the basic arithmetic
operations of addition, subtraction, and multiplication inZm. Techniques described for per-
forming modular reduction for an arbitrary modulusm are the classical method (§14.3.1),
Montgomery’s method (§14.3.2), and Barrett’s method (§14.3.3). §14.3.4 describes a re-
duction procedure ideally suited to moduli of a special form. Greatest common divisor
(gcd) algorithms are the topic of §14.4, including the binary gcd algorithm (§14.4.1) and
Lehmer’s gcd algorithm (§14.4.2). Efficient algorithms for performing extended gcd com-
putations are given in §14.4.3. Modular inverses are also considered in §14.4.3. Garner’s
algorithm for implementing the Chinese remainder theorem can be found in §14.5. §14.6 is
a treatment of several of the most practical exponentiation algorithms. §14.6.1 deals with
exponentiation in general, without consideration of any special conditions. §14.6.2 looks
at exponentiation when the base is variable and the exponent is fixed. §14.6.3 considers al-
gorithms which take advantage of a fixed-base element and variable exponent. Techniques
involving representing the exponent in non-binary form are given in §14.7; recoding the ex-
ponent may allow significant performance enhancements. §14.8 contains further notes and
references.

14.2 Multiple-precision integer arithmetic

This section deals with the basic operations performed on multiple-precision integers: ad-
dition, subtraction, multiplication, squaring, and division. The algorithms presented in this
section are commonly referred to as the classical methods.

14.2.1 Radix representation

Positive integers can be represented in various ways, the most common being base 10. For
example, a = 123 base 10means a = 1 ·102+2 ·101+3 ·100. For machine computations,
base 2 (binary representation) is preferable. If a = 1111011 base 2, then a = 26 + 25 +
24 + 23 + 0 · 22 + 21 + 20.

14.1 Fact If b ≥ 2 is an integer, then any positive integer a can be expressed uniquely as a =
anb

n+ an−1b
n−1+ · · ·+ a1b+ a0, where ai is an integer with 0 ≤ ai < b for 0 ≤ i ≤ n,

and an 6= 0.

14.2 Definition The representation of a positive integer a as a sum of multiples of powers of
b, as given in Fact 14.1, is called the base b or radix b representation of a.
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§14.2 Multiple-precision integer arithmetic 593

14.3 Note (notation and terminology)

(i) The base b representation of a positive integer a given in Fact 14.1 is usually written
as a = (anan−1 · · · a1a0)b. The integers ai, 0 ≤ i ≤ n, are called digits. an is
called the most significant digit or high-order digit; a0 the least significant digit or
low-order digit. If b = 10, the standard notation is a = anan−1 · · · a1a0.

(ii) It is sometimes convenient to pad high-order digits of a base b representation with
0’s; such a padded number will also be referred to as the base b representation.

(iii) If (anan−1 · · · a1a0)b is the base b representation of a and an 6= 0, then the precision
or length of a is n+1. If n = 0, then a is called a single-precision integer; otherwise,
a is a multiple-precision integer. a = 0 is also a single-precision integer.

The division algorithm for integers (see Definition 2.82) provides an efficient method
for determining the base b representation of a non-negative integer, for a given base b. This
provides the basis for Algorithm 14.4.

14.4 Algorithm Radix b representation

INPUT: integers a and b, a ≥ 0, b ≥ 2.
OUTPUT: the base b representation a = (an · · · a1a0)b, where n ≥ 0 and an 6= 0 if n ≥ 1.

1. i←0, x←a, q←bxb c, ai←x− qb. (b·c is the floor function; see page 49.)
2. While q > 0, do the following:

2.1 i←i+ 1, x←q, q←bx
b
c, ai←x− qb.

3. Return((aiai−1 · · · a1a0)).

14.5 Fact If (anan−1 · · · a1a0)b is the base b representation of a and k is a positive integer,
then (ulul−1 · · ·u1u0)bk is the base bk representation of a, where l = d(n + 1)/ke − 1,
ui =

∑k−1
j=0 aik+jb

j for 0 ≤ i ≤ l − 1, and ul =
∑n−lk
j=0 alk+jb

j .

14.6 Example (radix b representation) The base 2 representation of a = 123 is (1111011)2.
The base 4 representation of a is easily obtained from its base 2 representation by grouping
digits in pairs from the right: a = ((1)2(11)2(10)2(11)2)4 = (1323)4. �

Representing negative numbers

Negative integers can be represented in several ways. Two commonly used methods are:

1. signed-magnitude representation
2. complement representation.

These methods are described below. The algorithms provided in this chapter all assume a
signed-magnitude representation for integers, with the sign digit being implicit.

(i) Signed-magnitude representation

The sign of an integer (i.e., either positive or negative) and its magnitude (i.e., absolute
value) are represented separately in a signed-magnitude representation. Typically, a posi-
tive integer is assigned a sign digit 0, while a negative integer is assigned a sign digit b−1.
For n-digit radix b representations, only 2bn−1 sequences out of the bn possible sequences
are utilized: precisely bn−1−1 positive integers and bn−1−1 negative integers can be rep-
resented, and 0 has two representations. Table 14.1 illustrates the binary signed-magnitude
representation of the integers in the range [7,−7].
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594 Ch. 14 Efficient Implementation

Signed-magnitude representation has the drawback that when certain operations (such
as addition and subtraction) are performed, the sign digit must be checked to determine the
appropriate manner to perform the computation. Conditional branching of this type can be
costly when many operations are performed.

(ii) Complement representation

Addition and subtraction using complement representation do not require the checking of
the sign digit. Non-negative integers in the range [0, bn−1 − 1] are represented by base b
sequences of length n with the high-order digit being 0. Suppose x is a positive integer
in this range represented by the sequence (xnxn−1 · · ·x1x0)b where xn = 0. Then −x is
represented by the sequence x = (xnxn−1 · · ·x1x0)+1where xi = b−1−xi and+ is the
standard addition with carry. Table 14.1 illustrates the binary complement representation of
the integers in the range [−7, 7]. In the binary case, complement representation is referred
to as two’s complement representation.

Sequence Signed- Two’s
magnitude complement

0111 7 7
0110 6 6
0101 5 5
0100 4 4
0011 3 3
0010 2 2
0001 1 1
0000 0 0

Sequence Signed- Two’s
magnitude complement

1111 −7 −1
1110 −6 −2
1101 −5 −3
1100 −4 −4
1011 −3 −5
1010 −2 −6
1001 −1 −7
1000 −0 −8

Table 14.1: Signed-magnitude and two’s complement representations of integers in [−7, 7].

14.2.2 Addition and subtraction

Addition and subtraction are performed on two integers having the same number of base b
digits. To add or subtract two integers of different lengths, the smaller of the two integers
is first padded with 0’s on the left (i.e., in the high-order positions).

14.7 Algorithm Multiple-precision addition

INPUT: positive integers x and y, each having n+ 1 base b digits.
OUTPUT: the sum x+ y = (wn+1wn · · ·w1w0)b in radix b representation.

1. c←0 (c is the carry digit).
2. For i from 0 to n do the following:

2.1 wi←(xi + yi + c) mod b.
2.2 If (xi + yi + c) < b then c←0; otherwise c←1.

3. wn+1←c.
4. Return((wn+1wn · · ·w1w0)).

14.8 Note (computational efficiency) The base b should be chosen so that (xi + yi+ c) mod b
can be computed by the hardware on the computing device. Some processors have instruc-
tion sets which provide an add-with-carry to facilitate multiple-precision addition.
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§14.2 Multiple-precision integer arithmetic 595

14.9 Algorithm Multiple-precision subtraction

INPUT: positive integers x and y, each having n+ 1 base b digits, with x ≥ y.
OUTPUT: the difference x− y = (wnwn−1 · · ·w1w0)b in radix b representation.

1. c←0.
2. For i from 0 to n do the following:

2.1 wi←(xi − yi + c) mod b.
2.2 If (xi − yi + c) ≥ 0 then c←0; otherwise c←− 1.

3. Return((wnwn−1 · · ·w1w0)).

14.10 Note (eliminating the requirement x ≥ y) If the relative magnitudes of the integers x
and y are unknown, then Algorithm 14.9 can be modified as follows. On termination of
the algorithm, if c = −1, then repeat Algorithm 14.9 with x = (00 · · · 00)b and y =
(wnwn−1 · · ·w1w0)b. Conditional checking on the relative magnitudes of x and y can also
be avoided by using a complement representation (§14.2.1(ii)).

14.11 Example (modified subtraction) Let x = 3996879 and y = 4637923 in base 10, so that
x < y. Table 14.2 shows the steps of the modified subtraction algorithm (cf. Note 14.10).�

First execution of Algorithm 14.9
i 6 5 4 3 2 1 0
xi 3 9 9 6 8 7 9
yi 4 6 3 7 9 2 3
wi 9 3 5 8 9 5 6
c −1 0 0 −1 −1 0 0

Second execution of Algorithm 14.9
i 6 5 4 3 2 1 0
xi 0 0 0 0 0 0 0
yi 9 3 5 8 9 5 6
wi 0 6 4 1 0 4 4
c −1 −1 −1 −1 −1 −1 −1

Table 14.2: Modified subtraction (see Example 14.11).

14.2.3 Multiplication

Let x and y be integers expressed in radix b representation: x = (xnxn−1 · · ·x1x0)b and
y = (ytyt−1 · · · y1y0)b. The product x · y will have at most (n+ t+ 2) base b digits. Al-
gorithm 14.12 is a reorganization of the standard pencil-and-paper method taught in grade
school. A single-precision multiplication means the multiplication of two base b digits. If
xj and yi are two base b digits, then xj · yi can be written as xj · yi = (uv)b, where u and
v are base b digits, and u may be 0.

14.12 Algorithm Multiple-precision multiplication

INPUT: positive integers x and y having n+ 1 and t+ 1 base b digits, respectively.
OUTPUT: the product x · y = (wn+t+1 · · ·w1w0)b in radix b representation.

1. For i from 0 to (n+ t+ 1) do: wi←0.
2. For i from 0 to t do the following:

2.1 c←0.
2.2 For j from 0 to n do the following:

Compute (uv)b = wi+j + xj · yi + c, and set wi+j←v, c←u.
2.3 wi+n+1←u.

3. Return((wn+t+1 · · ·w1w0)).
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596 Ch. 14 Efficient Implementation

14.13 Example (multiple-precision multiplication) Take x = x3x2x1x0 = 9274 and y =
y2y1y0 = 847 (base 10 representations), so that n = 3 and t = 2. Table 14.3 shows
the steps performed by Algorithm 14.12 to compute x · y = 7855078. �

i j c wi+j + xjyi + c u v w6 w5 w4 w3 w2 w1 w0

0 0 0 0 + 28 + 0 2 8 0 0 0 0 0 0 8
1 2 0 + 49 + 2 5 1 0 0 0 0 0 1 8
2 5 0 + 14 + 5 1 9 0 0 0 0 9 1 8
3 1 0 + 63 + 1 6 4 0 0 6 4 9 1 8

1 0 0 1 + 16 + 0 1 7 0 0 6 4 9 7 8
1 1 9 + 28 + 1 3 8 0 0 6 4 8 7 8
2 3 4 + 8 + 3 1 5 0 0 6 5 8 7 8
3 1 6 + 36 + 1 4 3 0 4 3 5 8 7 8

2 0 0 8 + 32 + 0 4 0 0 4 3 5 0 7 8
1 4 5 + 56 + 4 6 5 0 4 3 5 0 7 8
2 6 3 + 16 + 6 2 5 0 4 5 5 0 7 8
3 2 4 + 72 + 2 7 8 7 8 5 5 0 7 8

Table 14.3: Multiple-precision multiplication (see Example 14.13).

14.14 Remark (pencil-and-paper method) The pencil-and-paper method for multiplying x =
9274 and y = 847 would appear as

9 2 7 4
× 8 4 7

6 4 9 1 8 (row 1)
3 7 0 9 6 (row 2)

7 4 1 9 2 (row 3)
7 8 5 5 0 7 8

The shaded entries in Table 14.3 correspond to row 1, row 1 + row 2, and row 1 + row 2 +
row 3, respectively.

14.15 Note (computational efficiency of Algorithm 14.12)

(i) The computationally intensive portion of Algorithm 14.12 is step 2.2. Computing
wi+j + xj · yi + c is called the inner-product operation. Since wi+j , xj , yi and c
are all base b digits, the result of an inner-product operation is at most (b− 1)+ (b−
1)2 + (b− 1) = b2 − 1 and, hence, can be represented by two base b digits.

(ii) Algorithm 14.12 requires (n+ 1)(t+ 1) single-precision multiplications.
(iii) It is assumed in Algorithm 14.12 that single-precision multiplications are part of the

instruction set on a processor. The quality of the implementation of this instruction
is crucial to an efficient implementation of Algorithm 14.12.

14.2.4 Squaring

In the preceding algorithms, (uv)b has both u and v as single-precision integers. This nota-
tion is abused in this subsection by permitting u to be a double-precision integer, such that
0 ≤ u ≤ 2(b− 1). The value v will always be single-precision.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§14.2 Multiple-precision integer arithmetic 597

14.16 Algorithm Multiple-precision squaring

INPUT: positive integer x = (xt−1xt−2 · · ·x1x0)b.
OUTPUT: x · x = x2 in radix b representation.

1. For i from 0 to (2t− 1) do: wi←0.
2. For i from 0 to (t− 1) do the following:

2.1 (uv)b←w2i + xi · xi, w2i←v, c←u.
2.2 For j from (i+ 1) to (t− 1) do the following:

(uv)b←wi+j + 2xj · xi + c, wi+j←v, c←u.
2.3 wi+t←u.

3. Return((w2t−1w2t−2 . . . w1w0)b).

14.17 Note (computational efficiency of Algorithm 14.16)

(i) (overflow) In step 2.2, u can be larger than a single-precision integer. Since wi+j
is always set to v, wi+j ≤ b − 1. If c ≤ 2(b − 1), then wi+j + 2xjxi + c ≤
(b− 1)+ 2(b− 1)2+2(b− 1) = (b− 1)(2b+1), implying 0 ≤ u ≤ 2(b− 1). This
value of u may exceed single-precision, and must be accommodated.

(ii) (number of operations) The computationally intensive part of the algorithm is step 2.
The number of single-precision multiplications is about (t2 + t)/2, discounting the
multiplication by 2. This is approximately one half of the single-precision multipli-
cations required by Algorithm 14.12 (cf. Note 14.15(ii)).

14.18 Note (squaring vs. multiplication in general) Squaring a positive integerx (i.e., computing
x2) can at best be no more than twice as fast as multiplying distinct integers x and y. To
see this, consider the identity xy = ((x+y)2− (x−y)2)/4. Hence, x ·y can be computed
with two squarings (i.e., (x+ y)2 and (x− y)2). Of course, a speed-up by a factor of 2 can
be significant in many applications.

14.19 Example (squaring) Table 14.4 shows the steps performed by Algorithm 14.16 in squar-
ing x = 989. Here, t = 3 and b = 10. �

i j w2i + x
2
i wi+j + 2xjxi + c u v w5 w4 w3 w2 w1 w0

0 − 0 + 81 − 8 1 0 0 0 0 0 1
1 − 0 + 2 · 8 · 9 + 8 15 2 0 0 0 0 2 1
2 − 0 + 2 · 9 · 9 + 15 17 7 0 0 0 7 2 1

17 7 0 0 17 7 2 1
1 − 7 + 64 − 7 1 0 0 17 1 2 1
2 − 17 + 2 · 9 · 8 + 7 16 8 0 0 8 1 2 1

16 8 0 16 8 1 2 1
2 − 16 + 81 − 9 7 0 7 8 1 2 1

9 7 9 7 8 1 2 1

Table 14.4: Multiple-precision squaring (see Example 14.19).
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598 Ch. 14 Efficient Implementation

14.2.5 Division

Division is the most complicated and costly of the basic multiple-precision operations. Al-
gorithm 14.20 computes the quotient q and remainder r in radix b representation when x is
divided by y.

14.20 Algorithm Multiple-precision division

INPUT: positive integers x = (xn · · ·x1x0)b, y = (yt · · · y1y0)b with n ≥ t ≥ 1, yt 6= 0.
OUTPUT: the quotient q = (qn−t · · · q1q0)b and remainder r = (rt · · · r1r0)b such that
x = qy + r, 0 ≤ r < y.

1. For j from 0 to (n− t) do: qj←0.
2. While (x ≥ ybn−t) do the following: qn−t←qn−t + 1, x←x− ybn−t.
3. For i from n down to (t+ 1) do the following:

3.1 If xi = yt then set qi−t−1←b− 1; otherwise set qi−t−1←b(xib+ xi−1)/yt)c.
3.2 While (qi−t−1(ytb+ yt−1) > xib2 + xi−1b+ xi−2) do: qi−t−1←qi−t−1 − 1.
3.3 x←x− qi−t−1ybi−t−1.
3.4 If x < 0 then set x←x+ ybi−t−1 and qi−t−1←qi−t−1 − 1.

4. r←x.
5. Return(q,r).

14.21 Example (multiple-precision division) Letx = 721948327,y = 84461, so thatn = 8 and
t = 4. Table 14.5 illustrates the steps in Algorithm 14.20. The last row gives the quotient
q = 8547 and the remainder r = 60160. �

i q4 q3 q2 q1 q0 x8 x7 x6 x5 x4 x3 x2 x1 x0

– 0 0 0 0 0 7 2 1 9 4 8 3 2 7

8 0 9 0 0 0 7 2 1 9 4 8 3 2 7
8 0 0 0 4 6 2 6 0 3 2 7

7 8 5 0 0 4 0 2 9 8 2 7

6 8 5 5 0 4 0 2 9 8 2 7
8 5 4 0 6 5 1 3 8 7

5 8 5 4 8 6 5 1 3 8 7
8 5 4 7 6 0 1 6 0

Table 14.5: Multiple-precision division (see Example 14.21).

14.22 Note (comments on Algorithm 14.20)

(i) Step 2 of Algorithm 14.20 is performed at most once if yt ≥ b b2c and b is even.
(ii) The condition n ≥ t ≥ 1 can be replaced by n ≥ t ≥ 0, provided one takes xj =
yj = 0 whenever a subscript j < 0 in encountered in the algorithm.

14.23 Note (normalization) The estimate for the quotient digit qi−t−1 in step 3.1 of Algorithm
14.20 is never less than the true value of the quotient digit. Furthermore, if yt ≥ b b2c, then
step 3.2 is repeated no more than twice. If step 3.1 is modified so that qi−t−1←b(xib2 +
xi−1b + xi−2)/(ytb + yt−1)c, then the estimate is almost always correct and step 3.2 is
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§14.3 Multiple-precision modular arithmetic 599

never repeated more than once. One can always guarantee that yt ≥ b b2c by replacing the
integers x, y by λx, λy for some suitable choice of λ. The quotient of λx divided by λy is
the same as that of x by y; the remainder is λ times the remainder of x divided by y. If the
base b is a power of 2 (as in many applications), then the choice of λ should be a power of 2;
multiplication by λ is achieved by simply left-shifting the binary representations of x and
y. Multiplying by a suitable choice of λ to ensure that yt ≥ b b2c is called normalization.
Example 14.24 illustrates the procedure.

14.24 Example (normalized division) Take x = 73418 and y = 267. Normalize x and y by
multiplying each by λ = 3: x′ = 3x = 220254 and y′ = 3y = 801. Table 14.6 shows
the steps of Algorithm 14.20 as applied to x′ and y′. When x′ is divided by y′, the quotient
is 274, and the remainder is 780. When x is divided by y, the quotient is also 274 and the
remainder is 780/3 = 260. �

i q3 q2 q1 q0 x5 x4 x3 x2 x1 x0

− 0 0 0 0 2 2 0 2 5 4
5 0 2 0 0 6 0 0 5 4
4 2 7 0 3 9 8 4
3 2 7 4 7 8 0

Table 14.6: Multiple-precision division after normalization (see Example 14.24).

14.25 Note (computational efficiency of Algorithm 14.20 with normalization)

(i) (multiplication count) Assuming that normalization extends the number of digits in
x by 1, each iteration of step 3 requires 1 + (t+ 2) = t+ 3 single-precision multi-
plications. Hence, Algorithm 14.20 with normalization requires about (n− t)(t+3)
single-precision multiplications.

(ii) (division count) Since step 3.1 of Algorithm 14.20 is executed n − t times, at most
n− t single-precision divisions are required when normalization is used.

14.3 Multiple-precision modular arithmetic

§14.2 provided methods for carrying out the basic operations (addition, subtraction, multi-
plication, squaring, and division) with multiple-precision integers. This section deals with
these operations in Zm, the integers modulo m, where m is a multiple-precision positive
integer. (See §2.4.3 for definitions of Zm and related operations.)

Let m = (mnmn−1 · · ·m1m0)b be a positive integer in radix b representation. Let
x = (xnxn−1 · · ·x1x0)b and y = (ynyn−1 · · · y1y0)b be non-negative integers in base b
representation such that x < m and y < m. Methods described in this section are for
computing x + y mod m (modular addition), x − y mod m (modular subtraction), and
x ·y mod m (modular multiplication). Computing x−1 mod m (modular inversion) is ad-
dressed in §14.4.3.

14.26 Definition If z is any integer, then z mod m (the integer remainder in the range [0,m−1]
after z is divided bym) is called the modular reduction of z with respect to modulusm.
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600 Ch. 14 Efficient Implementation

Modular addition and subtraction

As is the case for ordinary multiple-precision operations, addition and subtraction are the
simplest to compute of the modular operations.

14.27 Fact Let x and y be non-negative integers with x, y < m. Then:
(i) x+ y < 2m;

(ii) if x ≥ y, then 0 ≤ x− y < m; and
(iii) if x < y, then 0 ≤ x+m− y < m.

If x, y ∈ Zm, then modular addition can be performed by using Algorithm 14.7 to add
x and y as multiple-precision integers, with the additional step of subtractingm if (and only
if) x+ y ≥ m. Modular subtraction is precisely Algorithm 14.9, provided x ≥ y.

14.3.1 Classical modular multiplication

Modular multiplication is more involved than multiple-precision multiplication (§14.2.3),
requiring both multiple-precision multiplication and some method for performing modular
reduction (Definition 14.26). The most straightforward method for performing modular re-
duction is to compute the remainder on division bym, using a multiple-precision division
algorithm such as Algorithm 14.20; this is commonly referred to as the classical algorithm
for performing modular multiplication.

14.28 Algorithm Classical modular multiplication

INPUT: two positive integers x, y and a modulusm, all in radix b representation.
OUTPUT: x · y mod m.

1. Compute x · y (using Algorithm 14.12).
2. Compute the remainder r when x · y is divided bym (using Algorithm 14.20).
3. Return(r).

14.3.2 Montgomery reduction

Montgomery reduction is a technique which allows efficient implementation of modular
multiplication without explicitly carrying out the classical modular reduction step.

Letm be a positive integer, and letR and T be integers such thatR > m, gcd(m,R) =
1, and 0 ≤ T < mR. A method is described for computing TR−1 mod m without using
the classical method of Algorithm 14.28. TR−1 mod m is called a Montgomery reduction
of T modulo m with respect to R. With a suitable choice of R, a Montgomery reduction
can be efficiently computed.

Suppose x and y are integers such that 0 ≤ x, y < m. Let x̃ = xR mod m and
ỹ = yR mod m. The Montgomery reduction of x̃ỹ is x̃ỹR−1 mod m = xyR mod m.
This observation is used in Algorithm 14.94 to provide an efficient method for modular
exponentiation.

To briefly illustrate, consider computing x5 mod m for some integer x, 1 ≤ x < m.
First compute x̃ = xR mod m. Then compute the Montgomery reduction of x̃x̃, which is
A = x̃2R−1 mod m. The Montgomery reduction ofA2 isA2R−1 mod m = x̃4R−3 mod
m. Finally, the Montgomery reduction of (A2R−1 mod m)x̃ is (A2R−1)x̃R−1 mod m =
x̃5R−4 mod m = x5R mod m. Multiplying this value by R−1 mod m and reducing
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modulo m gives x5 mod m. Provided that Montgomery reductions are more efficient to
compute than classical modular reductions, this method may be more efficient than com-
puting x5 mod m by repeated application of Algorithm 14.28.

Ifm is represented as a base b integer of length n, then a typical choice forR is bn. The
condition R > m is clearly satisfied, but gcd(R,m) = 1 will hold only if gcd(b,m) = 1.
Thus, this choice of R is not possible for all moduli. For those moduli of practical interest
(such as RSA moduli),m will be odd; then b can be a power of 2 and R = bn will suffice.

Fact 14.29 is basic to the Montgomery reduction method. Note 14.30 then implies that
R = bn is sufficient (but not necessary) for efficient implementation.

14.29 Fact (Montgomery reduction) Given integersm and R where gcd(m,R) = 1, let m′ =
−m−1 mod R, and let T be any integer such that 0 ≤ T < mR. If U = Tm′ mod R,
then (T + Um)/R is an integer and (T + Um)/R ≡ TR−1 (mod m).

Justification. T + Um ≡ T (mod m) and, hence, (T + Um)R−1 ≡ TR−1 (mod m).
To see that (T +Um)R−1 is an integer, observe that U = Tm′+kR andm′m = −1+ lR
for some integers k and l. It follows that (T + Um)/R = (T + (Tm′ + kR)m)/R =
(T + T (−1 + lR) + kRm)/R = lT + km.

14.30 Note (implications of Fact 14.29)
(i) (T + Um)/R is an estimate for TR−1 mod m. Since T < mR and U < R, then
(T+Um)/R < (mR+mR)/R = 2m. Thus either (T+Um)/R = TR−1 mod m
or (T+Um)/R = (TR−1 mod m)+m (i.e., the estimate is withinm of the residue).
Example 14.31 illustrates that both possibilities can occur.

(ii) If all integers are represented in radix b and R = bn, then TR−1 mod m can be
computed with two multiple-precision multiplications (i.e., U = T ·m′ and U ·m)
and simple right-shifts of T + Um in order to divide by R.

14.31 Example (Montgomery reduction) Let m = 187, R = 190. Then R−1 mod m = 125,
m−1 mod R = 63, and m′ = 127. If T = 563, then U = Tm′ mod R = 61 and
(T + Um)/R = 63 = TR−1 mod m. If T = 1125 then U = Tm′ mod R = 185 and
(T + Um)/R = 188 = (TR−1 mod m) +m. �

Algorithm 14.32 computes the Montgomery reduction of T = (t2n−1 · · · t1t0)b when
R = bn and m = (mn−1 · · ·m1m0)b. The algorithm makes implicit use of Fact 14.29
by computing quantities which have similar properties to U = Tm′ mod R and T +Um,
although the latter two expressions are not computed explicitly.

14.32 Algorithm Montgomery reduction

INPUT: integersm = (mn−1 · · ·m1m0)bwith gcd(m, b) = 1,R = bn,m′ = −m−1 mod
b, and T = (t2n−1 · · · t1t0)b < mR.

OUTPUT: TR−1 mod m.
1. A←T . (Notation: A = (a2n−1 · · · a1a0)b.)
2. For i from 0 to (n− 1) do the following:

2.1 ui←aim′ mod b.
2.2 A←A+ uimbi.

3. A←A/bn.
4. If A ≥ m then A←A−m.
5. Return(A).
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14.33 Note (comments on Montgomery reduction)
(i) Algorithm 14.32 does not requirem′ = −m−1 mod R, as Fact 14.29 does, but rather
m′ = −m−1 mod b. This is due to the choice of R = bn.

(ii) At step 2.1 of the algorithm with i = l,A has the property that aj = 0, 0 ≤ j ≤ l−1.
Step 2.2 does not modify these values, but does replace al by 0. It follows that in
step 3, A is divisible by bn.

(iii) Going into step 3, the value of A equals T plus some multiple of m (see step 2.2);
here A = (T + km)/bn is an integer (see (ii) above) and A ≡ TR−1 (mod m). It
remains to show that A is less than 2m, so that at step 4, a subtraction (rather than a
division) will suffice. Going into step 3,A = T+

∑n−1
i=0 uib

im. But
∑n−1
i=0 uib

im <
bnm = Rm and T < Rm; hence, A < 2Rm. Going into step 4 (after division of A
by R), A < 2m as required.

14.34 Note (computational efficiency of Montgomery reduction) Step 2.1 and step 2.2 of Algo-
rithm 14.32 require a total of n + 1 single-precision multiplications. Since these steps are
executed n times, the total number of single-precision multiplications is n(n + 1). Algo-
rithm 14.32 does not require any single-precision divisions.

14.35 Example (Montgomery reduction) Letm = 72639, b = 10,R = 105, and T = 7118368.
Heren = 5,m′ = −m−1 mod 10 = 1, T mod m = 72385, and TR−1 mod m = 39796.
Table 14.7 displays the iterations of step 2 in Algorithm 14.32. �

i ui = aim
′ mod 10 uimb

i A

− − − 7118368

0 8 581112 7699480

1 8 5811120 13510600

2 6 43583400 57094000

3 4 290556000 347650000

4 5 3631950000 3979600000

Table 14.7: Montgomery reduction algorithm (see Example 14.35).

Montgomery multiplication

Algorithm 14.36 combines Montgomery reduction (Algorithm 14.32) and multiple-precis-
ion multiplication (Algorithm 14.12) to compute the Montgomery reduction of the product
of two integers.

14.36 Algorithm Montgomery multiplication

INPUT: integers m = (mn−1 · · ·m1m0)b, x = (xn−1 · · ·x1x0)b, y = (yn−1 · · · y1y0)b
with 0 ≤ x, y < m, R = bn with gcd(m, b) = 1, andm′ = −m−1 mod b.
OUTPUT: xyR−1 mod m.

1. A←0. (Notation: A = (anan−1 · · ·a1a0)b.)
2. For i from 0 to (n− 1) do the following:

2.1 ui←(a0 + xiy0)m′ mod b.
2.2 A←(A+ xiy + uim)/b.

3. If A ≥ m then A←A−m.
4. Return(A).
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14.37 Note (partial justification of Algorithm 14.36) Suppose at the ith iteration of step 2 that
0 ≤ A < 2m−1. Step 2.2 replacesA with (A+xiy+uim)/b; but (A+xiy+uim)/b ≤
(2m − 2 + (b − 1)(m − 1) + (b − 1)m)/b = 2m − 1 − (1/b). Hence, A < 2m − 1,
justifying step 3.

14.38 Note (computational efficiency of Algorithm 14.36) Since A+xiy+uim is a multiple of
b, only a right-shift is required to perform a division by b in step 2.2. Step 2.1 requires two
single-precision multiplications and step 2.2 requires 2n. Since step 2 is executed n times,
the total number of single-precision multiplications is n(2 + 2n) = 2n(n+ 1).

14.39 Note (computing xy mod m with Montgomery multiplication) Suppose x, y, and m are
n-digit base b integers with 0 ≤ x, y < m. Neglecting the cost of the precomputation in
the input, Algorithm 14.36 computes xyR−1 mod mwith 2n(n+1) single-precision mul-
tiplications. Neglecting the cost to compute R2 mod m and applying Algorithm 14.36 to
xyR−1 mod m andR2 mod m, xy mod m is computed in 4n(n+1) single-precision op-
erations. Using classical modular multiplication (Algorithm 14.28) would require2n(n+1)
single-precision operations and no precomputation. Hence, the classical algorithm is supe-
rior for doing a single modular multiplication; however, Montgomery multiplication is very
effective for performing modular exponentiation (Algorithm 14.94).

14.40 Remark (Montgomery reduction vs. Montgomery multiplication) Algorithm 14.36 (Mont-
gomery multiplication) takes as input two n-digit numbers and then proceeds to interleave
the multiplication and reduction steps. Because of this, Algorithm 14.36 is not able to take
advantage of the special case where the input integers are equal (i.e., squaring). On the other
hand, Algorithm 14.32 (Montgomery reduction) assumes as input the product of two inte-
gers, each of which has at most n digits. Since Algorithm 14.32 is independent of multiple-
precision multiplication, a faster squaring algorithm such as Algorithm 14.16 may be used
prior to the reduction step.

14.41 Example (Montgomery multiplication) In Algorithm 14.36, let m = 72639, R = 105,
x = 5792, y = 1229. Here n = 5, m′ = −m−1 mod 10 = 1, and xyR−1 mod m =
39796. Notice thatm andR are the same values as in Example 14.35, as is xy = 7118368.
Table 14.8 displays the steps in Algorithm 14.36. �

i xi xiy0 ui xiy uim A

0 2 18 8 2458 581112 58357
1 9 81 8 11061 581112 65053
2 7 63 6 8603 435834 50949
3 5 45 4 6145 290556 34765
4 0 0 5 0 363195 39796

Table 14.8: Montgomery multiplication (see Example 14.41).

14.3.3 Barrett reduction

Barrett reduction (Algorithm 14.42) computes r = x mod m givenx andm. The algorithm
requires the precomputation of the quantityµ = bb2k/mc; it is advantageous if many reduc-
tions are performed with a single modulus. For example, each RSA encryption for one en-
tity requires reduction modulo that entity’s public key modulus. The precomputation takes
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a fixed amount of work, which is negligible in comparison to modular exponentiation cost.
Typically, the radix b is chosen to be close to the word-size of the processor. Hence, assume
b > 3 in Algorithm 14.42 (see Note 14.44 (ii)).

14.42 Algorithm Barrett modular reduction

INPUT: positive integers x = (x2k−1 · · ·x1x0)b,m = (mk−1 · · ·m1m0)b (withmk−1 6=
0), and µ = bb2k/mc.
OUTPUT: r = x mod m.

1. q1←bx/bk−1c, q2←q1 · µ, q3←bq2/bk+1c.
2. r1←x mod bk+1, r2←q3 ·m mod bk+1, r←r1 − r2.
3. If r < 0 then r←r + bk+1.
4. While r ≥ m do: r←r −m.
5. Return(r).

14.43 Fact By the division algorithm (Definition 2.82), there exist integers Q and R such that
x = Qm + R and 0 ≤ R < m. In step 1 of Algorithm 14.42, the following inequality is
satisfied: Q− 2 ≤ q3 ≤ Q.

14.44 Note (partial justification of correctness of Barrett reduction)
(i) Algorithm 14.42 is based on the observation that bx/mc can be written as Q =
b(x/bk−1)(b2k/m)(1/bk+1)c. Moreover, Q can be approximated by the quantity
q3 =

⌊
bx/bk−1cµ/bk+1

⌋
. Fact 14.43 guarantees that q3 is never larger than the true

quotientQ, and is at most 2 smaller.
(ii) In step 2, observe that −bk+1 < r1 − r2 < bk+1, r1 − r2 ≡ (Q − q3)m + R
(mod bk+1), and 0 ≤ (Q − q3)m + R < 3m < bk+1 since m < bk and 3 < b. If
r1− r2 ≥ 0, then r1− r2 = (Q− q3)m+R. If r1− r2 < 0, then r1− r2+ bk+1 =
(Q− q3)m+R. In either case, step 4 is repeated at most twice since 0 ≤ r < 3m.

14.45 Note (computational efficiency of Barrett reduction)
(i) All divisions performed in Algorithm 14.42 are simple right-shifts of the base b rep-

resentation.
(ii) q2 is only used to compute q3. Since the k + 1 least significant digits of q2 are not

needed to determine q3, only a partial multiple-precision multiplication (i.e., q1 · µ)
is necessary. The only influence of the k + 1 least significant digits on the higher
order digits is the carry from position k + 1 to position k + 2. Provided the base b
is sufficiently large with respect to k, this carry can be accurately computed by only
calculating the digits at positions k and k+1. 1 Hence, thek−1 least significant digits
of q2 need not be computed. Since µ and q1 have at most k+1 digits, determining q3
requires at most (k + 1)2 −

(
k
2

)
= (k2 + 5k + 2)/2 single-precision multiplications.

(iii) In step 2 of Algorithm 14.42, r2 can also be computed by a partial multiple-precision
multiplication which evaluates only the least significant k + 1 digits of q3 ·m. This
can be done in at most

(
k+1
2

)
+ k single-precision multiplications.

14.46 Example (Barrett reduction) Let b = 4, k = 3, x = (313221)b, and m = (233)b (i.e.,
x = 3561 and m = 47). Then µ = b46/mc = 87 = (1113)b, q1 = b(313221)b/42c =
(3132)b, q2 = (3132)b · (1113)b = (10231302)b, q3 = (1023)b, r1 = (3221)b, r2 =
(1023)b · (233)b mod b4 = (3011)b, and r = r1 − r2 = (210)b. Thus x mod m = 36. �
1If b > k, then the carry computed by simply considering the digits at position k − 1 (and ignoring the carry

from position k − 2) will be in error by at most 1.
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14.3.4 Reduction methods for moduli of special form

When the modulus has a special (customized) form, reduction techniques can be employed
to allow more efficient computation. Suppose that the modulusm is a t-digit base b positive
integer of the form m = bt − c, where c is an l-digit base b positive integer (for some
l < t). Algorithm 14.47 computes x mod m for any positive integer x by using only shifts,
additions, and single-precision multiplications of base b numbers.

14.47 Algorithm Reduction modulom = bt − c

INPUT: a base b, positive integer x, and a modulusm = bt − c, where c is an l-digit base
b integer for some l < t.
OUTPUT: r = x mod m.

1. q0←bx/btc, r0←x− q0bt, r←r0, i←0.
2. While qi > 0 do the following:

2.1 qi+1←bqic/btc, ri+1←qic− qi+1bt.
2.2 i←i+ 1, r←r + ri.

3. While r ≥ m do: r←r −m.
4. Return(r).

14.48 Example (reduction modulo bt − c) Let b = 4,m = 935 = (32213)4, and x = 31085 =
(13211231)4. Since m = 45 − (1121)4, take c = (1121)4. Here t = 5 and l = 4.
Table 14.9 displays the quotients and remainders produced by Algorithm 14.47. At the be-
ginning of step 3, r = (102031)4. Since r > m, step 3 computes r −m = (3212)4. �

i qi−1c qi ri r

0 – (132)4 (11231)4 (11231)4
1 (221232)4 (2)4 (21232)4 (33123)4
2 (2302)4 (0)4 (2302)4 (102031)4

Table 14.9: Reduction modulom = bt − c (see Example 14.48).

14.49 Fact (termination) For some integer s ≥ 0, qs = 0; hence, Algorithm 14.47 terminates.

Justification. qic = qi+1bt+ri+1, i ≥ 0. Since c < bt, qi = (qi+1bt/c)+(ri+1/c) > qi+1.
Since the qi’s are non-negative integers which strictly decrease as i increases, there is some
integer s ≥ 0 such that qs = 0.

14.50 Fact (correctness) Algorithm 14.47 terminates with the correct residue modulom.

Justification. Suppose that s is the smallest index i for which qi = 0 (i.e., qs = 0). Now,
x = q0b

t + r0 and qic = qi+1bt + ri+1, 0 ≤ i ≤ s − 1. Adding these equations gives

x +
(∑s−1

i=0 qi

)
c =

(∑s−1
i=0 qi

)
bt +

∑s
i=0 ri. Since bt ≡ c (mod m), it follows that

x ≡
∑s
i=0 ri (mod m). Hence, repeated subtraction of m from r =

∑s
i=0 ri gives the

correct residue.
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14.51 Note (computational efficiency of reduction modulo bt − c)
(i) Suppose that x has 2t base b digits. If l ≤ t/2, then Algorithm 14.47 executes step 2

at most s = 3 times, requiring 2 multiplications by c. In general, if l is approxi-
mately (s− 2)t/(s− 1), then Algorithm 14.47 executes step 2 about s times. Thus,
Algorithm 14.47 requires about sl single-precision multiplications.

(ii) If c has few non-zero digits, then multiplication by c will be relatively inexpensive.
If c is large but has few non-zero digits, the number of iterations of Algorithm 14.47
will be greater, but each iteration requires a very simple multiplication.

14.52 Note (modifications) Algorithm 14.47 can be modified if m = bt + c for some positive
integer c < bt: in step 2.2, replace r←r + ri with r←r + (−1)iri.

14.53 Remark (using moduli of a special form) Selecting RSA moduli of the form bt ± c for
small values of c limits the choices of primes p and q. Care must also be exercised when
selecting moduli of a special form, so that factoring is not made substantially easier; this is
because numbers of this form are more susceptible to factoring by the special number field
sieve (see §3.2.7). A similar statement can be made regarding the selection of primes of a
special form for cryptographic schemes based on the discrete logarithm problem.

14.4 Greatest common divisor algorithms

Many situations in cryptography require the computation of the greatest common divisor
(gcd) of two positive integers (see Definition 2.86). Algorithm 2.104 describes the classical
Euclidean algorithm for this computation. For multiple-precision integers, Algorithm 2.104
requires a multiple-precision division at step 1.1 which is a relatively expensive operation.
This section describes three methods for computing the gcd which are more efficient than
the classical approach using multiple-precision numbers. The first is non-Euclidean and
is referred to as the binary gcd algorithm (§14.4.1). Although it requires more steps than
the classical algorithm, the binary gcd algorithm eliminates the computationally expen-
sive division and replaces it with elementary shifts and additions. Lehmer’s gcd algorithm
(§14.4.2) is a variant of the classical algorithm more suited to multiple-precision computa-
tions. A binary version of the extended Euclidean algorithm is given in §14.4.3.

14.4.1 Binary gcd algorithm

14.54 Algorithm Binary gcd algorithm

INPUT: two positive integers x and y with x ≥ y.
OUTPUT: gcd(x, y).

1. g←1.
2. While both x and y are even do the following: x←x/2, y←y/2, g←2g.
3. While x 6= 0 do the following:

3.1 While x is even do: x←x/2.
3.2 While y is even do: y←y/2.
3.3 t←|x− y|/2.
3.4 If x ≥ y then x←t; otherwise, y←t.

4. Return(g · y).
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14.55 Example (binary gcd algorithm) The following table displays the steps performed by Al-
gorithm 14.54 for computing gcd(1764, 868) = 28. �

x 1764 441 112 7 7 7 7 7 0
y 868 217 217 217 105 49 21 7 7
g 1 4 4 4 4 4 4 4 4

14.56 Note (computational efficiency of Algorithm 14.54)

(i) If x and y are in radix 2 representation, then the divisions by 2 are simply right-shifts.
(ii) Step 3.3 for multiple-precision integers can be computed using Algorithm 14.9.

14.4.2 Lehmer’s gcd algorithm

Algorithm 14.57 is a variant of the classical Euclidean algorithm (Algorithm 2.104) and
is suited to computations involving multiple-precision integers. It replaces many of the
multiple-precision divisions by simpler single-precision operations.

Let x and y be positive integers in radix b representation, with x ≥ y. Without loss
of generality, assume that x and y have the same number of base b digits throughout Algo-
rithm 14.57; this may necessitate padding the high-order digits of y with 0’s.

14.57 Algorithm Lehmer’s gcd algorithm

INPUT: two positive integers x and y in radix b representation, with x ≥ y.
OUTPUT: gcd(x, y).

1. While y ≥ b do the following:

1.1 Set x̃, ỹ to be the high-order digit of x, y, respectively (ỹ could be 0).
1.2 A←1, B←0, C←0, D←1.
1.3 While (ỹ + C) 6= 0 and (ỹ +D) 6= 0 do the following:

q←b(x̃+A)/(ỹ + C)c, q′←b(x̃+B)/(ỹ +D)c.
If q 6= q′ then go to step 1.4.
t←A− qC, A←C, C←t, t←B − qD, B←D, D←t.
t←x̃− qỹ, x̃←ỹ, ỹ←t.

1.4 If B = 0, then T←x mod y, x←y, y←T ;
otherwise, T←Ax+ By, u←Cx+Dy, x←T , y←u.

2. Compute v = gcd(x, y) using Algorithm 2.104.
3. Return(v).

14.58 Note (implementation notes for Algorithm 14.57)

(i) T is a multiple-precision variable. A, B, C, D, and t are signed single-precision
variables; hence, one bit of each of these variables must be reserved for the sign.

(ii) The first operation of step 1.3 may result in overflow since 0 ≤ x̃+ A, ỹ +D ≤ b.
This possibility needs to be accommodated. One solution is to reserve two bits more
than the number of bits in a digit for each of x̃ and ỹ to accommodate both the sign
and the possible overflow.

(iii) The multiple-precision additions of step 1.4 are actually subtractions, sinceAB ≤ 0
and CD ≤ 0.
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14.59 Note (computational efficiency of Algorithm 14.57)

(i) Step 1.3 attempts to simulate multiple-precision divisions by much simpler single-
precision operations. In each iteration of step 1.3, all computations are single preci-
sion. The number of iterations of step 1.3 depends on b.

(ii) The modular reduction in step 1.4 is a multiple-precision operation. The other op-
erations are multiple-precision, but require only linear time since the multipliers are
single precision.

14.60 Example (Lehmer’s gcd algorithm) Let b = 103, x = 768 454 923, and y = 542 167 814.
Since b = 103, the high-order digits of x and y are x̃ = 768 and ỹ = 542, respectively.
Table 14.10 displays the values of the variables at various stages of Algorithm 14.57. The
single-precision computations (Step 1.3) when q = q′ are shown in Table 14.11. Hence
gcd(x, y) = 1. �

14.4.3 Binary extended gcd algorithm

Given integers x and y, Algorithm 2.107 computes integers a and b such that ax+ by = v,
where v = gcd(x, y). It has the drawback of requiring relatively costly multiple-precision
divisions when x and y are multiple-precision integers. Algorithm 14.61 eliminates this
requirement at the expense of more iterations.

14.61 Algorithm Binary extended gcd algorithm

INPUT: two positive integers x and y.
OUTPUT: integers a, b, and v such that ax+ by = v, where v = gcd(x, y).

1. g←1.
2. While x and y are both even, do the following: x←x/2, y←y/2, g←2g.
3. u←x, v←y, A←1, B←0, C←0, D←1.
4. While u is even do the following:

4.1 u←u/2.
4.2 If A ≡ B ≡ 0 (mod 2) then A←A/2, B←B/2; otherwise, A←(A + y)/2,
B←(B − x)/2.

5. While v is even do the following:

5.1 v←v/2.
5.2 If C ≡ D ≡ 0 (mod 2) then C←C/2, D←D/2; otherwise, C←(C + y)/2,
D←(D − x)/2.

6. If u ≥ v then u←u− v, A←A− C, B←B −D;
otherwise, v←v − u, C←C −A, D←D −B.

7. If u = 0, then a←C, b←D, and return(a, b, g · v); otherwise, go to step 4.

14.62 Example (binary extended gcd algorithm) Let x = 693 and y = 609. Table 14.12 dis-
plays the steps in Algorithm 14.61 for computing integersa, b, v such that 693a+609b= v,
where v = gcd(693, 609). The algorithm returns v = 21, a = −181, and b = 206. �
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x y q q′ precision reference

768 454 923 542 167 814 1 1 single Table 14.11(i)
89 593 596 47 099 917 1 1 single Table 14.11(ii)
42 493 679 4 606 238 10 8 multiple
4 606 238 1 037 537 5 2 multiple
1 037 537 456 090 – – multiple

456 090 125 357 3 3 single Table 14.11(iii)
34 681 10 657 3 3 single Table 14.11(iv)
10 657 2 710 5 3 multiple
2 710 2 527 1 0 multiple
2 527 183 Algorithm 2.104

183 148 Algorithm 2.104
148 35 Algorithm 2.104

35 8 Algorithm 2.104
8 3 Algorithm 2.104
3 2 Algorithm 2.104
2 1 Algorithm 2.104
1 0 Algorithm 2.104

Table 14.10: Lehmer’s gcd algorithm (see Example 14.60).

x̃ ỹ A B C D q q′

(i) 768 542 1 0 0 1 1 1
542 226 0 1 1 −1 2 2
226 90 1 −1 −2 3 2 2
90 46 −2 3 5 −7 1 2

(ii) 89 47 1 0 0 1 1 1
47 42 0 1 1 −1 1 1
42 5 1 −1 −1 2 10 5

(iii) 456 125 1 0 0 1 3 3
125 81 0 1 1 −3 1 1
81 44 1 −3 −1 4 1 1
44 37 −1 4 2 −7 1 1
37 7 2 −7 −3 11 9 1

(iv) 34 10 1 0 0 1 3 3
10 4 0 1 1 −3 2 11

Table 14.11: Single-precision computations (see Example 14.60 and Table 14.10).
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u v A B C D

693 609 1 0 0 1
84 609 1 −1 0 1
42 609 305 −347 0 1
21 609 457 −520 0 1
21 588 457 −520 −457 521
21 294 457 −520 76 −86
21 147 457 −520 38 −43
21 126 457 −520 −419 477
21 63 457 −520 95 −108
21 42 457 −520 −362 412
21 21 457 −520 −181 206
0 21 638 −726 −181 206

Table 14.12: The binary extended gcd algorithm with x = 693, y = 609 (see Example 14.62).

14.63 Note (computational efficiency of Algorithm 14.61)

(i) The only multiple-precision operations needed for Algorithm 14.61 are addition and
subtraction. Division by 2 is simply a right-shift of the binary representation.

(ii) The number of bits needed to represent either u or v decreases by (at least) 1, after at
most two iterations of steps 4 – 7; thus, the algorithm takes at most 2(blg xc+blg yc+
2) such iterations.

14.64 Note (multiplicative inverses) Given positive integers m and a, it is often necessary to
find an integer z ∈ Zm such that az ≡ 1 (mod m), if such an integer exists. z is called
the multiplicative inverse of a modulom (see Definition 2.115). For example, construct-
ing the private key for RSA requires the computation of an integer d such that ed ≡ 1
(mod (p − 1)(q − 1)) (see Algorithm 8.1). Algorithm 14.61 provides a computation-

ally efficient method for determining z given a and m, by setting x = m and y = a. If
gcd(x, y) = 1, then, at termination, z = D if D > 0, or z = m + D if D < 0; if
gcd(x, y) 6= 1, then a is not invertible modulo m. Notice that if m is odd, it is not nec-
essary to compute the values of A and C. It would appear that step 4 of Algorithm 14.61
requires bothA andB in order to decide which case in step 4.2 is executed. But ifm is odd
and B is even, then A must be even; hence, the decision can be made using the parities of
B andm.

Example 14.65 illustrates Algorithm 14.61 for computing a multiplicative inverse.

14.65 Example (multiplicative inverse) Letm = 383 and a = 271. Table 14.13 illustrates the
steps of Algorithm 14.61 for computing 271−1 mod 383 = 106. Notice that values for the
variablesA and C need not be computed. �

14.5 Chinese remainder theorem for integers

Fact 2.120 introduced the Chinese remainder theorem (CRT) and Fact 2.121 outlined an al-
gorithm for solving the associated system of linear congruences. Although the method de-
scribed there is the one found in most textbooks on elementary number theory, it is not the
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iteration: 1 2 3 4 5 6 7 8 9 10

u 383 112 56 28 14 7 7 7 7 7
v 271 271 271 271 271 271 264 132 66 33
B 0 −1 −192 −96 −48 −24 −24 −24 −24 −24
D 1 1 1 1 1 1 25 −179 −281 −332

iteration: 11 12 13 14 15 16 17 18 19
u 7 7 7 7 4 2 1 1 1
v 26 13 6 3 3 3 3 2 1
B −24 −24 −24 −24 41 −171 −277 −277 −277
D −308 −154 −130 −65 −65 −65 −65 212 106

Table 14.13: Inverse computation using the binary extended gcd algorithm (see Example 14.65).

method of choice for large integers. Garner’s algorithm (Algorithm 14.71) has some com-
putational advantages. §14.5.1 describes an alternate (non-radix) representation for non-
negative integers, called a modular representation, that allows some computational advan-
tages compared to standard radix representations. Algorithm 14.71 provides a technique
for converting numbers from modular to base b representation.

14.5.1 Residue number systems

In previous sections, non-negative integers have been represented in radix b notation. An
alternate means is to use a mixed-radix representation.

14.66 Fact LetB be a fixed positive integer. Letm1,m2, . . . ,mt be positive integers such that
gcd(mi,mj) = 1 for all i 6= j, andM =

∏t
i=1mi ≥ B. Then each integer x, 0 ≤ x < B,

can be uniquely represented by the sequence of integers v(x) = (v1, v2, . . . , vt), where
vi = x mod mi, 1 ≤ i ≤ t.

14.67 Definition Referring to Fact 14.66, v(x) is called the modular representation or mixed-
radix representation of x for the modulim1,m2, . . . ,mt. The set of modular representa-
tions for all integers x in the range 0 ≤ x < B is called a residue number system.

If v(x) = (v1, v2, . . . , vt) and v(y) = (u1, u2, . . . , ut), define v(x)+v(y) = (w1, w2,
. . . , wt) where wi = vi + ui mod mi, and v(x) · v(y) = (z1, z2, . . . , zt) where zi =
vi · ui mod mi.

14.68 Fact If 0 ≤ x, y < M , then v((x+ y) modM) = v(x) + v(y) and v((x · y) modM) =
v(x) · v(y).

14.69 Example (modular representation) LetM = 30 = 2×3×5; here, t = 3,m1 = 2,m1 =
3, and m3 = 5. Table 14.14 displays each residue modulo 30 along with its associated
modular representation. As an example of Fact 14.68, note that 21 + 27 ≡ 18 (mod 30)
and (101) + (102) = (003). Also 22 · 17 ≡ 14 (mod 30) and (012) · (122) = (024). �

14.70 Note (computational efficiency of modular representation for RSA decryption) Suppose
that n = pq, where p and q are distinct primes. Fact 14.68 implies that xd mod n can be
computed in a modular representation as vd(x); that is, if v(x) = (v1, v2) with respect to
moduli m1 = p, m2 = q, then vd(x) = (vd1 mod p, v

d
2 mod q). In general, computing
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x v(x) x v(x) x v(x) x v(x) x v(x)

0 (000) 6 (001) 12 (002) 18 (003) 24 (004)
1 (111) 7 (112) 13 (113) 19 (114) 25 (110)
2 (022) 8 (023) 14 (024) 20 (020) 26 (021)
3 (103) 9 (104) 15 (100) 21 (101) 27 (102)
4 (014) 10 (010) 16 (011) 22 (012) 28 (013)
5 (120) 11 (121) 17 (122) 23 (123) 29 (124)

Table 14.14: Modular representations (see Example 14.69).

vd1 mod p and vd2 mod q is faster than computing xd mod n. For RSA, if p and q are part
of the private key, modular representation can be used to improve the performance of both
decryption and signature generation (see Note 14.75).

Converting an integerx from a base b representation to a modular representation is eas-
ily done by applying a modular reduction algorithm to compute vi = x mod mi, 1 ≤ i ≤ t.
Modular representations of integers in ZM may facilitate some computational efficiencies,
provided conversion from a standard radix to modular representation and back are relatively
efficient operations. Algorithm 14.71 describes one way of converting from modular rep-
resentation back to a standard radix representation.

14.5.2 Garner’s algorithm

Garner’s algorithm is an efficient method for determining x, 0 ≤ x < M , given v(x) =
(v1, v2, . . . , vt), the residues of x modulo the pairwise co-prime modulim1,m2, . . . ,mt.

14.71 Algorithm Garner’s algorithm for CRT

INPUT: a positive integerM =
∏t
i=1mi > 1, with gcd(mi,mj) = 1 for all i 6= j, and a

modular representation v(x) = (v1, v2, . . . , vt) of x for themi.
OUTPUT: the integer x in radix b representation.

1. For i from 2 to t do the following:

1.1 Ci←1.
1.2 For j from 1 to (i− 1) do the following:

u←m−1j mod mi (use Algorithm 14.61).
Ci←u ·Ci mod mi.

2. u←v1, x←u.
3. For i from 2 to t do the following: u←(vi − x)Ci mod mi, x←x+ u ·

∏i−1
j=1mj .

4. Return(x).

14.72 Fact x returned by Algorithm 14.71 satisfies 0 ≤ x < M , x ≡ vi (mod mi), 1 ≤ i ≤ t.

14.73 Example (Garner’s algorithm) Let m1 = 5, m2 = 7, m3 = 11, m4 = 13, M =∏4
i=1mi = 5005, and v(x) = (2, 1, 3, 8). The constants Ci computed are C2 = 3,
C3 = 6, and C4 = 5. The values of (i, u, x) computed in step 3 of Algorithm 14.71 are
(1, 2, 2), (2, 4, 22), (3, 7, 267), and (4, 5, 2192). Hence, the modular representation v(x) =
(2, 1, 3, 8) corresponds to the integer x = 2192. �
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14.74 Note (computational efficiency of Algorithm 14.71)

(i) If Garner’s algorithm is used repeatedly with the same modulusM and the same fac-
tors ofM , then step 1 can be considered as a precomputation, requiring the storage
of t− 1 numbers.

(ii) The classical algorithm for the CRT (Algorithm 2.121) typically requires a modular
reduction with modulusM , whereas Algorithm 14.71 does not. SupposeM is a kt-
bit integer and eachmi is a k-bit integer. A modular reduction byM takesO((kt)2)
bit operations, whereas a modular reduction bymi takesO(k2) bit operations. Since
Algorithm 14.71 only does modular reduction with mi, 2 ≤ i ≤ t, it takes O(tk2)
bit operations in total for the reduction phase, and is thus more efficient.

14.75 Note (RSA decryption and signature generation)

(i) (special case of two moduli) Algorithm 14.71 is particularly efficient for RSA moduli
n = pq, where m1 = p and m2 = q are distinct primes. Step 1 computes a single
value C2 = p−1 mod q. Step 3 is executed once: u = (v2 − v1)C2 mod q and
x = v1 + up.

(ii) (RSA exponentiation) Suppose p and q are t-bit primes, and let n = pq. Let d be a 2t-
bit RSA private key. RSA decryption and signature generation compute xd mod n
for some x ∈ Zn. Suppose that modular multiplication and squaring require k2 bit
operations for k-bit inputs, and that exponentiation with a k-bit exponent requires
about 32kmultiplications and squarings (see Note 14.78). Then computingxd mod n
requires about 32 (2t)

3 = 12t3 bit operations. A more efficient approach is to compute
xdp mod p and xdq mod q (where dp = d mod (p− 1) and dq = d mod (q − 1)),
and then use Garner’s algorithm to construct xd mod pq. Although this procedure
takes two exponentiations, each is considerably more efficient because the moduli
are smaller. Assuming that the cost of Algorithm 14.71 is negligible with respect to
the exponentiations, computing xd mod n is about 32 (2t)

3/2(32 t
3) = 4 times faster.

14.6 Exponentiation

One of the most important arithmetic operations for public-key cryptography is exponen-
tiation. The RSA scheme (§8.2) requires exponentiation in Zm for some positive integer
m, whereas Diffie-Hellman key agreement (§12.6.1) and the ElGamal encryption scheme
(§8.4) use exponentiation in Zp for some large prime p. As pointed out in §8.4.2, ElGamal
encryption can be generalized to any finite cyclic group. This section discusses methods for
computing the exponential ge, where the base g is an element of a finite group G (§2.5.1)
and the exponent e is a non-negative integer. A reader uncomfortable with the setting of a
general group may considerG to be Z∗m; that is, read ge as ge mod m.

An efficient method for multiplying two elements in the group G is essential to per-
forming efficient exponentiation. The most naive way to compute ge is to do e − 1 multi-
plications in the groupG. For cryptographic applications, the order of the groupG typically
exceeds 2160 elements, and may exceed 21024. Most choices of e are large enough that it
would be infeasible to compute ge using e− 1 successive multiplications by g.

There are two ways to reduce the time required to do exponentiation. One way is to
decrease the time to multiply two elements in the group; the other is to reduce the number
of multiplications used to compute ge. Ideally, one would do both.

This section considers three types of exponentiation algorithms.
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1. basic techniques for exponentiation. Arbitrary choices of the base g and exponent e
are allowed.

2. fixed-exponent exponentiationalgorithms. The exponente is fixed and arbitrary choi-
ces of the base g are allowed. RSA encryption and decryption schemes benefit from
such algorithms.

3. fixed-base exponentiation algorithms. The base g is fixed and arbitrary choices of
the exponent e are allowed. ElGamal encryption and signatures schemes and Diffie-
Hellman key agreement protocols benefit from such algorithms.

14.6.1 Techniques for general exponentiation

This section includes general-purpose exponentiation algorithms referred to as repeated
square-and-multiply algorithms.

(i) Basic binary and k-ary exponentiation

Algorithm 14.76 is simply Algorithm 2.143 restated in terms of an arbitrary finite abelian
groupG with identity element 1.

14.76 Algorithm Right-to-left binary exponentiation

INPUT: an element g ∈ G and integer e ≥ 1.
OUTPUT: ge.

1. A←1, S←g.
2. While e 6= 0 do the following:

2.1 If e is odd then A←A · S.
2.2 e←be/2c.
2.3 If e 6= 0 then S←S · S.

3. Return(A).

14.77 Example (right-to-left binary exponentiation) The following table displays the values of
A, e, and S during each iteration of Algorithm 14.76 for computing g283. �

A 1 g g3 g3 g11 g27 g27 g27 g27 g283

e 283 141 70 35 17 8 4 2 1 0

S g g2 g4 g8 g16 g32 g64 g128 g256 −

14.78 Note (computational efficiency of Algorithm 14.76) Let t + 1 be the bitlength of the bi-
nary representation of e, and let wt(e) be the number of 1’s in this representation. Algo-
rithm 14.76 performs t squarings and wt(e)− 1 multiplications. If e is randomly selected
in the range 0 ≤ e < |G| = n, then about blg nc squarings and 12 (blg nc + 1) multiplica-
tions can be expected. (The assignment 1 · x is not counted as a multiplication, nor is the
operation 1 · 1 counted as a squaring.) If squaring is approximately as costly as an arbi-
trary multiplication (cf. Note 14.18), then the expected amount of work is roughly 32blg nc
multiplications.

Algorithm 14.76 computesA · S whenever e is odd. For some choices of g, A · g can
be computed more efficiently than A · S for arbitrary S. Algorithm 14.79 is a left-to-right
binary exponentiation which replaces the operationA ·S (for arbitrary S) by the operation
A · g (for fixed g).
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14.79 Algorithm Left-to-right binary exponentiation

INPUT: g ∈ G and a positive integer e = (etet−1 · · · e1e0)2.
OUTPUT: ge.

1. A←1.
2. For i from t down to 0 do the following:

2.1 A←A ·A.
2.2 If ei = 1, then A←A · g.

3. Return(A).

14.80 Example (left-to-right binary exponentiation) The following table displays the values of
A during each iteration of Algorithm 14.79 for computing g283. Note that t = 8 and 283 =
(100011011)2. �

i 8 7 6 5 4 3 2 1 0

ei 1 0 0 0 1 1 0 1 1

A g g2 g4 g8 g17 g35 g70 g141 g283

14.81 Note (computational efficiency of Algorithm 14.79) Let t + 1 be the bitlength of the bi-
nary representation of e, and let wt(e) be the number of 1’s in this representation. Algo-
rithm 14.79 performs t+ 1 squarings and wt(e) − 1 multiplications by g. The number of
squarings and multiplications is the same as in Algorithm 14.76 but, in this algorithm, mul-
tiplication is always with the fixed value g. If g has a special structure, this multiplication
may be substantially easier than multiplying two arbitrary elements. For example, a fre-
quent operation in ElGamal public-key schemes is the computation of gk mod p, where g
is a generator ofZ∗p and p is a large prime number. The multiple-precision computationA·g
can be done in linear time if g is chosen so that it can be represented by a single-precision
integer (e.g., g = 2). If the radix b is sufficiently large, there is a high probability that such
a generator exists.

Algorithm 14.82, sometimes referred to as the window method for exponentiation, is a
generalization of Algorithm 14.79 which processes more than one bit of the exponent per
iteration.

14.82 Algorithm Left-to-right k-ary exponentiation

INPUT: g and e = (etet−1 · · · e1e0)b, where b = 2k for some k ≥ 1.
OUTPUT: ge.

1. Precomputation.

1.1 g0←1.
1.2 For i from 1 to (2k − 1) do: gi←gi−1 · g. (Thus, gi = gi.)

2. A←1.
3. For i from t down to 0 do the following:

3.1 A←A2
k

.
3.2 A←A · gei .

4. Return(A).
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In Algorithm 14.83, Algorithm 14.82 is modified slightly to reduce the amount of pre-
computation. The following notation is used: for each i, 0 ≤ i ≤ t, if ei 6= 0, then write
ei = 2

hiui where ui is odd; if ei = 0, then let hi = 0 and ui = 0.

14.83 Algorithm Modified left-to-right k-ary exponentiation

INPUT: g and e = (etet−1 · · · e1e0)b, where b = 2k for some k ≥ 1.
OUTPUT: ge.

1. Precomputation.

1.1 g0←1, g1←g, g2←g2.
1.2 For i from 1 to (2k−1 − 1) do: g2i+1←g2i−1 · g2.

2. A←1.
3. For i from t down to 0 do: A←(A2

k−hi · gui)
2hi .

4. Return(A).

14.84 Remark (right-to-left k-ary exponentiation) Algorithm 14.82 is a generalization of Algo-
rithm 14.79. In a similar manner, Algorithm 14.76 can be generalized to the k-ary case.
However, the optimization given in Algorithm 14.83 is not possible for the generalized
right-to-left k-ary exponentiation method.

(ii) Sliding-window exponentiation

Algorithm 14.85 also reduces the amount of precomputation compared to Algorithm 14.82
and, moreover, reduces the average number of multiplications performed (excluding squar-
ings). k is called the window size.

14.85 Algorithm Sliding-window exponentiation

INPUT: g, e = (etet−1 · · · e1e0)2 with et = 1, and an integer k ≥ 1.
OUTPUT: ge.

1. Precomputation.

1.1 g1←g, g2←g2.
1.2 For i from 1 to (2k−1 − 1) do: g2i+1←g2i−1 · g2.

2. A←1, i←t.
3. While i ≥ 0 do the following:

3.1 If ei = 0 then do: A←A2, i←i− 1.
3.2 Otherwise (ei 6= 0), find the longest bitstring eiei−1 · · · el such that i−l+1 ≤ k

and el = 1, and do the following:

A←A2
i−l+1

· g(eiei−1...el)2 , i←l − 1.

4. Return(A).

14.86 Example (sliding-window exponentiation) Take e = 11749 = (10110111100101)2 and
k = 3. Table 14.15 illustrates the steps of Algorithm 14.85. Notice that the sliding-window
method for this exponent requires three multiplications, corresponding to i = 7, 4, and 0.
Algorithm 14.79 would have required four multiplications for the same values of k and e.�
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i A Longest bitstring

13 1 101

10 g5 101

7 (g5)8g5 = g45 111

4 (g45)8g7 = g367 −

3 (g367)2 = g734 −

2 (g734)2 = g1468 101

0 (g1468)8g5 = g11749 −

Table 14.15: Sliding-window exponentiation with k = 3 and exponent e = (10110111100101)2 .

14.87 Note (comparison of exponentiation algorithms) Let t + 1 be the bitlength of e, and let
l + 1 be the number of k-bit words formed from e; that is, l = d(t + 1)/ke − 1 = bt/kc.
Table 14.16 summarizes the number of squarings and multiplications required by Algo-
rithms 14.76, 14.79, 14.82, and 14.83. Analysis of the number of squarings and multipli-
cations for Algorithm 14.85 is more difficult, although it is the recommended method.

(i) (squarings for Algorithm 14.82) The number of squarings for Algorithm 14.82 is lk.
Observe that lk = bt/kck = t − (t mod k). It follows that t − (k − 1) ≤ lk ≤ t
and that Algorithm 14.82 can save up to k− 1 squarings over Algorithms 14.76 and
14.79. An optimal value for k in Algorithm 14.82 will depend on t.

(ii) (squarings for Algorithm 14.83) The number of squarings for Algorithm 14.83 is lk+
hl where 0 ≤ hl ≤ t mod k. Since t−(k−1) ≤ lk ≤ lk+hl ≤ lk+(t mod k) = t
or t− (k−1) ≤ lk+hl ≤ t, the number of squarings for this algorithm has the same
bounds as Algorithm 14.82.

Precomputation Multiplications
Algorithm sq mult squarings worst case average case

14.76 0 0 t t t/2
14.79 0 0 t t t/2

14.82 1 2k − 3 t− (k − 1) ≤ lk ≤ t l− 1 l(2k − 1)/2k

14.83 1 2k−1 − 1 t− (k − 1) ≤ lk + hl ≤ t l− 1 l(2k − 1)/2k

Table 14.16: Number of squarings (sq) and multiplications (mult) for exponentiation algorithms.

(iii) Simultaneous multiple exponentiation

There are a number of situations which require computation of the product of several ex-
ponentials with distinct bases and distinct exponents (for example, verification of ElGa-
mal signatures; see Note 14.91). Rather than computing each exponential separately, Al-
gorithm 14.88 presents a method to do them simultaneously.

Let e0, e1, . . . , ek−1 be positive integers each of bitlength t; some of the high-order bits
of some of the exponents might be 0, but there is at least one ei whose high-order bit is 1.
Form a k×t arrayEA (called the exponent array) whose rows are the binary representations
of the exponents ei, 0 ≤ i ≤ k − 1. Let Ij be the non-negative integer whose binary
representation is the jth column, 1 ≤ j ≤ t, of EA, where low-order bits are at the top of
the column.
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14.88 Algorithm Simultaneous multiple exponentiation

INPUT: group elements g0, g1, . . . , gk−1 and non-negative t-bit integers e0, e1, . . . ek−1.
OUTPUT: ge00 g

e1
1 · · · g

ek−1
k−1 .

1. Precomputation. For i from 0 to (2k − 1): Gi←
∏k−1
j=0 g

ij
j where i = (ik−1 · · · i0)2.

2. A←1.
3. For i from 1 to t do the following: A←A ·A, A←A ·GIi .
4. Return(A).

14.89 Example (simultaneous multiple exponentiation) In this example, g300 g
10
1 g
24
2 is computed

using Algorithm 14.88. Let e0 = 30 = (11110)2, e1 = 10 = (01010)2, and e2 = 24 =
(11000)2. The 3× 5 array EA is:

1 1 1 1 0
0 1 0 1 0
1 1 0 0 0

The next table displays precomputed values from step 1 of Algorithm 14.88.

i 0 1 2 3 4 5 6 7

Gi 1 g0 g1 g0g1 g2 g0g2 g1g2 g0g1g2

Finally, the value ofA at the end of each iteration of step 3 is shown in the following table.
Here, I1 = 5, I2 = 7, I3 = 1, I4 = 3, and I5 = 0.

i 1 2 3 4 5

A g0g2 g30g1g
3
2 g70g

2
1g
6
2 g150 g

5
1g
12
2 g300 g

10
1 g

24
2

�

14.90 Note (computational efficiency of Algorithm 14.88)

(i) Algorithm 14.88 computes ge00 g
e1
1 · · · g

ek−1
k−1 (where each ei is represented by t bits)

by performing t − 1 squarings and at most (2k − 2) + t − 1 multiplications. The
multiplication is trivial for any column consisting of all 0’s.

(ii) Not all of theGi, 0 ≤ i ≤ 2k−1, need to be precomputed, but only for those iwhose
binary representation is a column of EA.

14.91 Note (ElGamal signature verification) The signature verification equation for the ElGa-
mal signature scheme (Algorithm 11.64) is αh(m)(α−a)r ≡ rs (mod p)where p is a large
prime, α a generator of Z∗p, α

a is the public key, and (r, s) is a signature for message m.
It would appear that three exponentiations and one multiplication are required to verify
the equation. If t = dlg pe and Algorithm 11.64 is applied, the number of squarings is
3(t − 1) and the number of multiplications is, on average, 3t/2. Hence, one would ex-
pect to perform about (9t−4)/2multiplications and squarings modulo p. Algorithm 14.88
can reduce the number of computations substantially if the verification equation is rewrit-
ten as αh(m)(α−a)rr−s ≡ 1 (mod p). Taking g0 = α, g1 = α−a, g2 = r, and e0 =
h(m) mod (p− 1), e1 = r mod (p− 1), e2 = −s mod (p− 1) in Algorithm 14.88, the
expected number of multiplications and squarings is (t−1)+(6+(7t/8)) = (15t+40)/8.
(For random exponents, one would expect that, on average, 78 of the columns of EAwill be
non-zero and necessitate a non-trivial multiplication.) This is only about 25% more costly
than a single exponentiation computed by Algorithm 14.79.
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(iv) Additive notation

Algorithms 14.76 and 14.79 have been described in the setting of a multiplicative group.
Algorithm 14.92 uses the methodology of Algorithm 14.79 to perform efficient multiplica-
tion in an additive group G. (For example, the group formed by the points on an elliptic
curve over a finite field uses additive notation.) Multiplication in an additive group corre-
sponds to exponentiation in a multiplicative group.

14.92 Algorithm Left-to-right binary multiplication in an additive group

INPUT: g ∈ G, whereG is an additive group, and a positive integer e = (etet−1 · · · e1e0)2.
OUTPUT: e · g.

1. A←0.
2. For i from t down to 0 do the following:

2.1 A←A+A.
2.2 If ei = 1 then A←A+ g.

3. Return(A).

14.93 Note (the additive group Zm)

(i) If G is the additive group Zm, then Algorithm 14.92 provides a method for doing
modular multiplication. For example, if a, b ∈ Zm, then a · b mod m can be com-
puted using Algorithm 14.92 by taking g = a and e = b, provided b is written in
binary.

(ii) If a, b ∈ Zm, then a < m and b < m. The accumulator A in Algorithm 14.92
never contains an integer as large as 2m; hence, modular reduction of the value in
the accumulator can be performed by a simple subtraction when A ≥ m; thus no
divisions are required.

(iii) Algorithms 14.82 and 14.83 can also be used for modular multiplication. In the case
of the additive group Zm, the time required to do modular multiplication can be im-
proved at the expense of precomputing a table of residues modulom. For a left-to-
right k-ary exponentiation scheme, the table will contain 2k− 1 residues modulom.

(v) Montgomery exponentiation

The introductory remarks to §14.3.2 outline an application of the Montgomery reduction
method for exponentiation. Algorithm 14.94 below combines Algorithm 14.79 and Al-
gorithm 14.36 to give a Montgomery exponentiation algorithm for computing xe mod m.
Note the definition of m′ requires that gcd(m,R) = 1. For integers u and v where 0 ≤
u, v < m, define Mont(u, v) to be uvR−1 mod m as computed by Algorithm 14.36.
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14.94 Algorithm Montgomery exponentiation

INPUT:m = (ml−1 · · ·m0)b, R = bl,m′ = −m−1 mod b, e = (et · · · e0)2 with et = 1,
and an integer x, 1 ≤ x < m.
OUTPUT: xe mod m.

1. x̃←Mont(x,R2 mod m), A←R mod m. (R mod m and R2 mod m may be pro-
vided as inputs.)

2. For i from t down to 0 do the following:

2.1 A←Mont(A,A).
2.2 If ei = 1 then A←Mont(A, x̃).

3. A←Mont(A, 1).
4. Return(A).

14.95 Example (Montgomery exponentiation) Let x,m, and R be integers suitable as inputs to
Algorithm 14.94. Let e = 11 = (1011)2; here, t = 3. The following table displays the
values of A mod m at the end of each iteration of step 2, and after step 3. �

i 3 2 1 0 Step 3

A mod m x̃ x̃2R−1 x̃5R−4 x̃11R−10 Mont(A, 1) = x̃11R−11 = x11

14.96 Note (computational efficiency of Montgomery exponentiation)

(i) Table 14.17 displays the average number of single-precision multiplications required
for each step of Algorithm 14.94. The expected number of single-precision multipli-
cations to compute xe mod m by Algorithm 14.94 is 3l(l + 1)(t+ 1).

(ii) Each iteration of step 2 in Algorithm 14.94 applies Algorithm 14.36 at a cost of 2l(l+
1) single-precision multiplications but no single-precision divisions. A similar algo-
rithm for modular exponentiation based on classical modular multiplication (Algo-
rithm 14.28) would similarly use 2l(l + 1) single-precision multiplications per iter-
ation but also l single-precision divisions.

(iii) Any of the other exponentiation algorithms discussed in §14.6.1 can be combined
with Montgomery reduction to give other Montgomery exponentiation algorithms.

Step 1 2 3

Number of Montgomery multiplications 1 3
2
t 1

Number of single-precision multiplications 2l(l + 1) 3tl(l+ 1) l(l + 1)

Table 14.17: Average number of single-precision multiplications per step of Algorithm 14.94.

14.6.2 Fixed-exponent exponentiation algorithms

There are numerous situations in which a number of exponentiations by a fixed exponent
must be performed. Examples include RSA encryption and decryption, and ElGamal de-
cryption. This subsection describes selected algorithms which improve the repeated square-
and-multiply algorithms of §14.6.1 by reducing the number of multiplications.
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(i) Addition chains

The purpose of an addition chain is to minimize the number of multiplications required for
an exponentiation.

14.97 Definition An addition chain V of length s for a positive integer e is a sequence u0, u1,
. . . , us of positive integers, and an associated sequencew1, . . . , ws of pairs wi = (i1, i2),
0 ≤ i1, i2 < i, having the following properties:

(i) u0 = 1 and us = e; and
(ii) for each ui, 1 ≤ i ≤ s, ui = ui1 + ui2 .

14.98 Algorithm Addition chain exponentiation

INPUT: a group element g, an addition chainV = (u0, u1, . . . , us) of length s for a positive
integer e, and the associated sequence w1, . . . , ws, where wi = (i1, i2).
OUTPUT: ge.

1. g0←g.
2. For i from 1 to s do: gi←gi1 · gi2 .
3. Return(gs).

14.99 Example (addition chain exponentiation) An addition chain of length 5 for e = 15 is
u0 = 1, u1 = 2, u2 = 3, u3 = 6, u4 = 12, u5 = 15. The following table displays the
values of wi and gi during each iteration of Algorithm 14.98 for computing g15. �

i 0 1 2 3 4 5

wi − (0, 0) (0, 1) (2, 2) (3, 3) (2, 4)

gi g g2 g3 g6 g12 g15

14.100 Remark (addition chains and binary representations) Given the binary representation of
an exponent e, it is a relatively simple task to construct an addition chain directly from this
representation. Chains constructed in this way generally do not provide the shortest addition
chain possible for the given exponent. The methods for exponentiation described in §14.6.1
could be phrased in terms of addition chains, but this is typically not done.

14.101 Note (computational efficiency of addition chain exponentiation) Given an addition chain
of length s for the positive integer e, Algorithm 14.98 computes ge for any g ∈ G, g 6= 1,
using exactly s multiplications.

14.102 Fact If l is the length of a shortest addition chain for a positive integer e, then l ≥ (lg e+
lgwt(e) − 2.13), where wt(e) is the number of 1’s in the binary representation of e. An
upper bound of (blg ec + wt(e) − 1) is obtained by constructing an addition chain for e
from its binary representation. Determining a shortest addition chain for e is known to be
an NP-hard problem.
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(ii) Vector-addition chains

Algorithms 14.88 and 14.104 are useful for computing ge00 g
e1
1 · · · g

ek−1
k−1 where g0, g1, . . . ,

gk−1 are arbitrary elements in a group G and e0, e1, . . . , ek−1 are fixed positive integers.
These algorithms can also be used to advantage when the exponents are not necessarily fixed
values (see Note 14.91). Algorithm 14.104 makes use of vector-addition chains.

14.103 Definition Let s and k be positive integers and let vi denote a k-dimensional vector of
non-negative integers. An ordered set V = {vi : −k + 1 ≤ i ≤ s} is called a vector-
addition chain of length s and dimension k if V satisfies the following:

(i) Each vi,−k + 1 ≤ i ≤ 0, has a 0 in each coordinate position, except for coordinate
position i+ k − 1, which is a 1. (Coordinate positions are labeled 0 through k − 1.)

(ii) For each vi, 1 ≤ i ≤ s, there exists an associated pair of integers wi = (i1, i2) such
that −k + 1 ≤ i1, i2 < i and vi = vi1 + vi2 (i1 = i2 is allowed).

Example 14.105 illustrates a sample vector-addition chain. Let V = {vi : −k + 1 ≤
i ≤ s} be a vector-addition chain of length s and dimension k with associated sequence
w1, . . . , ws. Algorithm 14.104 computes ge00 g

e1
1 · · · g

ek−1
k−1 where vs = (e0, e1, . . . , ek−1).

14.104 Algorithm Vector-addition chain exponentiation

INPUT: group elements g0, g1, . . . , gk−1 and a vector-addition chain V of length s and di-
mension k with associated sequence w1, . . . , ws, where wi = (i1, i2).
OUTPUT: ge00 g

e1
1 · · · g

ek−1
k−1 where vs = (e0, e1, . . . , ek−1).

1. For i from (−k + 1) to 0 do: ai←gi+k−1.
2. For i from 1 to s do: ai←ai1 · ai2 .
3. Return(as).

14.105 Example (vector-addition chain exponentiation) A vector-addition chain V of length s =
9 and dimension k = 3 is displayed in the following table.

v−2 v−1 v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

1 0 0 1 2 2 3 5 6 12 15 30
0 1 0 0 0 1 1 2 2 4 5 10
0 0 1 1 2 2 2 4 5 10 12 24

The following table displays the values of wi and ai during each iteration of step 2 in Al-
gorithm 14.104 for computing g300 g

10
1 g
24
2 . Nine multiplications are required. �

i 1 2 3 4 5 6 7 8 9

wi (−2, 0) (1, 1) (−1, 2) (−2, 3) (3, 4) (1, 5) (6, 6) (4, 7) (8, 8)

ai g0g2 g20g
2
2 g20g1g

2
2 g30g1g

2
2 g50g

2
1g
4
2 g

6
0g
2
1g
5
2 g120 g

4
1g
10
2 g150 g

5
1g
12
2 g300 g

10
1 g

24
2

14.106 Note (computational efficiency of vector-addition chain exponentiation)

(i) (multiplications) Algorithm 14.104 performs exactly s multiplications for a vector-
addition chain of length s. To compute ge00 g

e1
1 · · · g

ek−1
k−1 using Algorithm 14.104, one

would like to find a vector-addition chain of length s and dimension k with vs =
(e0, e1, . . . , ek−1), where s is as small as possible (see Fact 14.107).
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(ii) (storage) Algorithm 14.104 requires intermediate storage for the elements ai, −k +
1 ≤ i < t, at the tth iteration of step 2. If not all of these are required for succeeding
iterations, then they need not be stored. Algorithm 14.88 provides a special case of
Algorithm 14.104 where the intermediate storage is no larger than 2k − 1 vectors of
dimension k.

14.107 Fact The minimum value of s in Note 14.106(i) satisfies the following bound, whereM =
max{ei : 0 ≤ i ≤ k − 1} and c is a constant:

s ≤ k − 1 + lgM + ck · lgM/ lg lg(M + 2).

14.108 Example (vector-addition chains from binary representations) The vector-addition chain
implicit in Algorithm 14.88 is not necessarily of minimum length. The vector-addition
chain associated with Example 14.89 is displayed in Table 14.18. This chain is longer than
the one used in Example 14.105. The advantage of Algorithm 14.88 is that the vector-
addition chain does not have to be explicitly provided to the algorithm. In view of this,
Algorithm 14.88 can be applied more generally to situations where the exponents are not
necessarily fixed. �

v−2 v−1 v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

1 0 0 1 1 1 2 3 6 7 14 15 30
0 1 0 1 1 0 0 1 2 2 4 5 10
0 0 1 0 1 1 2 3 6 6 12 12 24

Table 14.18: Binary vector-addition chain exponentiation (see Example 14.108).

14.6.3 Fixed-base exponentiation algorithms

Three methods are presented for exponentiation when the base g is fixed and the exponent
e varies. With a fixed base, precomputation can be done once and used for many exponen-
tiations. For example, Diffie-Hellman key agreement (Protocol 12.47) requires the compu-
tation of αx, where α is a fixed element in Z∗p.

For each of the algorithms described in this section, {b0, b1, . . . , bt} is a set of integers
for some t ≥ 0, such that any exponent e ≥ 1 (suitably bounded) can be written as e =∑t
i=0 eibi, where 0 ≤ ei < h for some fixed positive integer h. For example, if e is any

(t+ 1)-digit base b integer with b ≥ 2, then bi = bi and h = b are possible choices.
Algorithms 14.109 and 14.113 are two fixed-base exponentiation methods. Both re-

quire precomputation of the exponentialsgb0 , gb1 , . . . , gbt , e.g., using one of the algorithms
from §14.6.1. The precomputation needed for Algorithm 14.117 is more involved and is ex-
plicitly described in Algorithm 14.116.

(i) Fixed-base windowing method

Algorithm 14.109 takes as input the precomputed exponentials gi = gbi , 0 ≤ i ≤ t, and
positive integers h and e =

∑t
i=0 eibi where 0 ≤ ei < h, 0 ≤ i ≤ t. The basis for the

algorithm is the observation that ge =
∏t
i=0 g

ei
i =

∏h−1
j=1 (
∏
ei=j
gi)
j .
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14.109 Algorithm Fixed-base windowing method for exponentiation

INPUT: {gb0 , gb1 , . . . , gbt}, e =
∑t
i=0 eibi, and h.

OUTPUT: ge.

1. A←1, B←1.
2. For j from (h− 1) down to 1 do the following:

2.1 For each i for which ei = j do: B←B · gbi .
2.2 A←A ·B.

3. Return(A).

14.110 Example (fixed-base windowing exponentiation) Precompute the group elements g1, g4,
g16, g64, g256. To compute ge for e = 862 = (31132)4, take t = 4, h = 4, and bi = 4i for
0 ≤ i ≤ 4, in Algorithm 14.109. The following table displays the values ofA and B at the
end of each iteration of step 2. �

j − 3 2 1

B 1 g4g256 = g260 g260g = g261 g261g16g64 = g341

A 1 g260 g260g261 = g521 g521g341 = g862

14.111 Note (computational efficiency of fixed-base windowing exponentiation)

(i) (number of multiplications) Suppose t + h ≥ 2. Only multiplications where both
operands are distinct from 1 are counted. Step 2.2 is executedh−1 times, but at least
one of these multiplications involves an operand with value 1 (A is initialized to 1).
SinceB is also initially 1, at most tmultiplications are done in step 2.1. Thus, Algo-
rithm 14.109 computes ge with at most t+ h− 2 multiplications (cf. Note 14.112).

(ii) (storage) Storage is required for the t+ 1 group elements gi, 0 ≤ i ≤ t.

14.112 Note (a particular case) The most obvious application of Algorithm 14.109 is the case
where the exponent e is represented in radix b. If e =

∑t
i=0 eib

i, then gi = gb
i

, 0 ≤ i ≤ t,
are precomputed. If e is randomly selected from {0, 1, . . . ,m− 1}, then t+1 ≤ dlogbme
and, on average, 1b of the base b digits in e will be 0. In this case, the expected number of
multiplications is b−1b dlogbme + b − 3. If m is a 512-bit integer and b = 32, then 128.8
multiplications are needed on average, 132 in the worst case; 103 values must be stored.

(ii) Fixed-base Euclidean method

Let {x0, x1, . . . , xt} be a set of integers with t ≥ 2. Define M to be an integer in the
interval [0, t] such that xM ≥ xi for all 0 ≤ i ≤ t. DefineN to be an integer in the interval
[0, t], N 6=M , such that eN ≥ ei for all 0 ≤ i ≤ t, i 6=M .

14.113 Algorithm Fixed-base Euclidean method for exponentiation

INPUT: {gb0 , gb1 , . . . , gbt} and e =
∑t
i=0 eibi.

OUTPUT: ge.

1. For i from 0 to t do the following: gi←gbi , xi←ei.
2. Determine the indicesM and N for {x0, x1, . . . , xt}.
3. While xN 6= 0 do the following:

3.1 q←bxM/xNc, gN←(gM )q · gN , xM←xM mod xN .
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3.2 Determine the indicesM andN for {x0, x1, . . . , xt}.

4. Return(gxMM ).

14.114 Example (fixed-base Euclidean method) This example repeats the computation of ge, e =
862 done in Example 14.110, but now uses Algorithm 14.113. Take b0 = 1, b1 = 16, b2 =
256. Then e = (3, 5, 14)16. Precompute g1, g16, g256. Table 14.19 illustrates the steps
performed by Algorithm 14.113. Notice that for this example, Algorithm 14.113 does 8

x0 x1 x2 M N q g0 g1 g2

14 5 3 0 1 2 g g18 g256

4 5 3 1 0 1 g19 g18 g256

4 1 3 0 2 1 g19 g18 g275

1 1 3 2 1 3 g19 g843 g275

1 1 0 0 1 1 g19 g862 g275

0 1 0 1 0 − g19 g862 g275

Table 14.19: Fixed-base Euclidean method to compute g862 (see Example 14.114).

multiplications, whereas Algorithm 14.109 needs only 6 to do the same computation. Stor-
age requirements for Algorithm 14.113 are, however, smaller. The vector-addition chain
(Definition 14.103) corresponding to this example is displayed in the following table. �

v−2 v−1 v0 v1 v2 v3 v4 v5 v6 v7 v8

1 0 0 2 2 3 3 6 9 11 14
0 1 0 0 1 1 1 2 3 4 5
0 0 1 0 0 0 1 2 3 3 3

14.115 Note (fixed-base Euclidean vs. fixed-base windowing methods)

(i) In most cases, the quotient q computed in step 3.1 of Algorithm 14.113 is 1. For a
given base b, the computational requirements of this algorithm are not significantly
greater than those of Algorithm 14.109.

(ii) Since the division algorithm is logarithmic in the size of the inputs, Algorithm 14.113
can take advantage of a larger value of h than Algorithm 14.109. This results in less
storage for precomputed values.

(iii) Fixed-base comb method

Algorithm 14.117 computes ge where e = (etet−1 · · · e1e0)2, t ≥ 1. Select an integer h,
1 ≤ h ≤ t+1 and compute a = d(t+1)/he. Select an integer v, 1 ≤ v ≤ a, and compute
b = da/ve. Clearly, ah ≥ t + 1. Let X = Rh−1||Rh−2|| · · · ||R0 be a bitstring formed
from e by padding (if necessary) e on the left with 0’s, so thatX has bitlength ah and each
Ri, 0 ≤ i ≤ h− 1, is a bitstring of length a. Form an h× a array EA (called the exponent
array) where row i of EA is the bitstring Ri, 0 ≤ i ≤ h − 1. Algorithm 14.116 is the
precomputation required for Algorithm 14.117.
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14.116 Algorithm Precomputation for Algorithm 14.117

INPUT: group element g and parameters h, v, a, and b (defined above).
OUTPUT: {G[j][i] : 1 ≤ i < 2h, 0 ≤ j < v}.

1. For i from 0 to (h− 1) do: gi←g2
ia

.
2. For i from 1 to (2h − 1) (where i = (ih−1 · · · i0)2), do the following:

2.1 G[0][i]←
∏h−1
j=0 g

ij
j .

2.2 For j from 1 to (v − 1) do: G[j][i]←(G[0][i])2
jb

.
3. Return({G[j][i] : 1 ≤ i < 2h, 0 ≤ j < v}).

Let Ij,k, 0 ≤ k < b, 0 ≤ j < v, be the integer whose binary representation is column
(jb+k) of EA, where column 0 is on the right and the least significant bits of a column are
at the top.

14.117 Algorithm Fixed-base comb method for exponentiation

INPUT: g, e and {G[j][i] : 1 ≤ i < 2h, 0 ≤ j < v} (precomputed in Algorithm 14.116).
OUTPUT: ge.

1. A←1.
2. For k from (b− 1) down to 0 do the following:

2.1 A←A ·A.
2.2 For j from (v − 1) down to 0 do: A←G[j][Ij,k] ·A.

3. Return(A).

14.118 Example (fixed-base comb method for exponentiation) Let t = 9 and h = 3; then a =
d10/3e = 4. Let v = 2; then b = da/ve = 2. Suppose the exponent input to Algo-
rithm 14.117 is e = (e9e8 · · · e1e0)2. Form the bitstring X = x11x10 · · ·x1x0 where
xi = ei, 0 ≤ i ≤ 9, and x11 = x10 = 0. The following table displays the exponent
array EA.

I1,1 I1,0 I0,1 I0,0
x3 x2 x1 x0
x7 x6 x5 x4
x11 x10 x9 x8

The precomputed values from Algorithm 14.116 are displayed below. Recall that gi = g2
ia

,
0 ≤ i < 3.

i 1 2 3 4 5 6 7

G[0][i] g0 g1 g1g0 g2 g2g0 g2g1 g2g1g0

G[1][i] g40 g41 g41g
4
0 g42 g42g

4
0 g42g

4
1 g42g

4
1g
4
0

Finally, the following table displays the steps in Algorithm 14.117 for EA.

A = gl00 g
l1
1 g
l2
2

k j l0 l1 l2

1 − 0 0 0

1 1 4x3 4x7 4x11

1 0 4x3 + x1 4x7 + x5 4x11 + x9

0 − 8x3 + 2x1 8x7 + 2x5 8x11 + 2x9

0 1 8x3 + 2x1 + 4x2 8x7 + 2x5 + 4x6 8x11 + 2x9 + 4x10

0 0 8x3 + 2x1 + 4x2 + x0 8x7 + 2x5 + 4x6 + x4 8x11 + 2x9 + 4x10 + x8

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§14.7 Exponent recoding 627

The last row of the table corresponds to g
∑11
i=0 xi2

i

= ge. �

14.119 Note (computational efficiency of fixed-base comb method)

(i) (number of multiplications) Algorithm 14.117 requires at most one multiplication for
each column of EA. The right-most column of EA requires a multiplication with the
initial value 1 of the accumulator A. The algorithm also requires a squaring of the
accumulator A for each k, 0 ≤ k < b, except for k = b − 1 when A has value
1. Discounting multiplications by 1, the total number of non-trivial multiplications
(including squarings) is, at most, a+ b− 2.

(ii) (storage) Algorithm 14.117 requires storage for the v(2h − 1) precomputed group
elements (Algorithm 14.116). If squaring is a relatively simple operation compared
to multiplication in the group, then some space-saving can be achieved by storing
only 2h − 1 group elements (i.e., only those elements computed in step 2.1 of Algo-
rithm 14.116).

(iii) (trade-offs) Since h and v are independent of the number of bits in the exponent, se-
lection of these parameters can be made based on the amount of storage available vs.
the amount of time (determined by multiplication) to do the computation.

14.7 Exponent recoding

Another approach to reducing the number of multiplications in the basic repeated square-
and-multiply algorithms (§14.6.1) is to replace the binary representation of the exponent e
with a representation which has fewer non-zero terms. Since the binary representation is
unique (Fact 14.1), finding a representation with fewer non-zero components necessitates
the use of digits besides 0 and 1. Transforming an exponent from one representation to an-
other is called exponent recoding. Many techniques for exponent recoding have been pro-
posed in the literature. This section describes two possibilities: signed-digit representation
(§14.7.1) and string-replacement representation (§14.7.2).

14.7.1 Signed-digit representation

14.120 Definition If e =
∑t
i=0 di2

i where di ∈ {0, 1,−1}, 0 ≤ i ≤ t, then (dt · · ·d1d0)SD is
called a signed-digit representation with radix 2 for the integer e.

Unlike the binary representation, the signed-digit representation of an integer is not
unique. The binary representation is an example of a signed-digit representation. Let e be a
positive integer whose binary representation is (et+1etet−1 · · · e1e0)2, with et+1 = et = 0.
Algorithm 14.121 constructs a signed-digit representation for e having at most t+ 1 digits
and the smallest possible number of non-zero terms.
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14.121 Algorithm Signed-digit exponent recoding

INPUT: a positive integer e = (et+1etet−1 · · · e1e0)2 with et+1 = et = 0.
OUTPUT: a signed-digit representation (dt · · ·d1d0)SD for e. (See Definition 14.120.)

1. c0←0.
2. For i from 0 to t do the following:

2.1 ci+1←b(ei + ei+1 + ci)/2c, di←ei + ci − 2ci+1.

3. Return((dt · · ·d1d0)SD ).

14.122 Example (signed-digit exponent recoding) Table 14.20 lists all possible inputs to the ith

iteration of step 2, and the corresponding outputs. If e = (1101110111)2, then Algo-
rithm 14.121 produces the signed-digit representation e = (10010001001)SD where 1 =
−1. Note that e = 29 + 28 + 26 + 25 + 24 + 22 + 2 + 1 = 210 − 27 − 23 − 1. �

inputs ei 0 0 0 0 1 1 1 1
ci 0 0 1 1 0 0 1 1
ei+1 0 1 0 1 0 1 0 1

outputs ci+1 0 0 0 1 0 1 1 1
di 0 0 1 −1 1 −1 0 0

Table 14.20: Signed-digit exponent recoding (see Example 14.122).

14.123 Definition A signed-digit representation of an integer e is said to be sparse if no two non-
zero entries are adjacent in the representation.

14.124 Fact (sparse signed-digit representation)

(i) Every integer e has a unique sparse signed-digit representation.
(ii) A sparse signed-digit representation for e has the smallest number of non-zero entries

among all signed-digit representations for e.
(iii) The signed-digit representation produced by Algorithm 14.121 is sparse.

14.125 Note (computational efficiency of signed-digit exponent recoding)

(i) Signed-digit exponent recoding as per Algorithm 14.121 is very efficient, and can be
done by table look-up (using Table 14.20).

(ii) When e is given in a signed-digit representation, computing ge requires both g and
g−1. If g is a fixed base, then g−1 can be precomputed. For a variable base g, unless
g−1 can be computed very quickly, recoding an exponent to signed-digit representa-
tion may not be worthwhile.

14.7.2 String-replacement representation

14.126 Definition Let k ≥ 1 be a positive integer. A non-negative integer e is said to have a
k-ary string-replacement representation (ft−1ft−2 · · · f1f0)SR(k), denoted SR(k), if e =∑t−1
i=0 fi2

i and fi ∈ {2j − 1 : 0 ≤ j ≤ k} for 0 ≤ i ≤ t− 1.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§14.7 Exponent recoding 629

14.127 Example (non-uniqueness of string-replacement representations) A string-replacement
representation for a non-negative integer is generally not unique. The binary representa-
tion is a 1-ary string-replacement representation. If k = 3 and e = 987 = (1111011011)2,
then some other string-replacements of e are (303003003)SR(3), (1007003003)SR(3), and
(71003003)SR(3). �

14.128 Algorithm k-ary string-replacement representation

INPUT: e = (et−1et−2 · · · e1e0)2 and positive integer k ≥ 2.
OUTPUT: e = (ft−1ft−2 · · · f1f0)SR(k).

1. For i from k down to 2 do the following: starting with the most significant digit of
e = (et−1et−2 · · · e1e0)2, replace each consecutive string of i ones with a string of
length i consisting of i − 1 zeros in the high-order string positions and the integer
2i − 1 in the low-order position.

2. Return((ft−1ft−2 · · · f1f0)SR(k)).

14.129 Example (k-ary string-replacement) Suppose e = (110111110011101)2 and k = 3. The
SR(3) representations of e at the end of each of the two iterations of Algorithm 14.128 are
(110007110000701)SR(3) and (030007030000701)SR(3). �

14.130 Algorithm Exponentiation using an SR(k) representation

INPUT: an integer k ≥ 2, an element g ∈ G, and e = (ft−1ft−2 · · · f1f0)SR(k).
OUTPUT: ge.

1. Precomputation. Set g1←g. For i from 2 to k do: g2i−1←(g2i−1−1)2 · g.
2. A←1.
3. For i from (t− 1) down to 0 do the following:

3.1 A←A ·A.
3.2 If fi 6= 0 then A←A · gfi .

4. Return(A).

14.131 Example (SR(k) vs. left-to-right binary exponentiation) Let e = 987 = (1111011011)2
and consider the 3-ary string-replacement representation (0071003003)SR(3). Computing
ge using Algorithm 14.79 requires 9 squarings and 7 multiplications. Algorithm 14.130
requires 2 squarings and 2 multiplications for computing g3 and g7, and then 7 squarings
and 3multiplications for the main part of the algorithm. In total, the SR(3) for e computes
ge with 9 squarings and 5 multiplications. �

14.132 Note (computational efficiency of Algorithm 14.130) The precomputation requires k − 1
squarings and k − 1 multiplications. Algorithm 14.128 is not guaranteed to produce an
SR(k) representation with a minimum number of non-zero entries, but in practice it seems
to give representations which are close to minimal. Heuristic arguments indicate that a ran-
domly selected t-bit exponent will be encoded with a suitably chosen value of k to an SR(k)
representation having about t/4 non-zero entries; hence, one expects to perform t−1 squar-
ings in step 3, and about t/4multiplications.
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14.8 Notes and further references
§14.1

This chapter deals almost exclusively with methods to perform operations in the integers
and the integers modulo some positive integer. When p is a prime number, Zp is called a
finite field (Fact 2.184). There are other finite fields which have significance in cryptogra-
phy. Of particular importance are those of characteristic two, F2m . Perhaps the most useful
property of these structures is that squaring is a linear operator (i.e., if α, β ∈ F2m , then
(α+ β)2 = α2 + β2). This property leads to efficient methods for exponentiation and for
inversion. Characteristic two finite fields have been used extensively in connection with
error-correcting codes; for example, see Berlekamp [118] and Lin and Costello [769]. For
error-correcting codes, m is typically quite small (e.g., 1 ≤ m ≤ 16); for cryptographic
applications,m is usually much larger (e.g.,m ≥ 100).

The majority of the algorithms presented in this chapter are best suited to software imple-
mentations. There is a vast literature on methods to perform modular multiplication and
other operations in hardware. The basis for most hardware implementations for modular
multiplication is efficient methods for integer addition. In particular, carry-save adders and
delayed-carry adders are at the heart of the best methods to perform modular multiplica-
tion. The concept of a delayed-carry adder was proposed by Norris and Simmons [933] to
produce a hardware modular multiplier which computes the product of two t-bit operands
modulo a t-bit modulus in 2t clock cycles. Brickell [199] improved the idea to produce a
modular multiplier requiring only t + 7 clock cycles. Enhancements of Brickell’s method
were given by Walter [1230]. Koç [699] gives a comprehensive survey of hardware meth-
ods for modular multiplication.

§14.2
For a treatment of radix representations including mixed-radix representations, see Knuth
[692]. Knuth describes efficient methods for performing radix conversions. Representing
and manipulating negative numbers is an important topic; for an introduction, consult the
book by Koren [706].

The techniques described in §14.2 are commonly referred to as the classical algorithms for
multiple-precision addition, subtraction, multiplication, and division. These algorithms are
the most useful for integers of the size used for cryptographic purposes. For much larger in-
tegers (on the order of thousands of decimal digits), more efficient methods exist. Although
not of current practical interest, some of these may become more useful as security require-
ments force practitioners to increase parameter sizes. The Karatsuba-Ofman method, de-
scribed next, is practical in some situations.

The classical algorithm for multiplication (Algorithm 14.12) takesO(n2) bit operations for
multiplying two n-bit integers. A recursive algorithm due to Karatsuba and Ofman [661]
reduces the complexity of multiplying two n-bit integers to O(n1.58). This divide-and-
conquer method is based on the following simple observation. Suppose that x and y are n-
bit integers andn = 2t. Then x = 2tx1+x0 and y = 2ty1+y0, wherex1, y1 are the t high-
order bits of x and y, respectively, and x0, y0 are the t low-order bits. Furthermore, x · y =
u22

2t+u12
t+u0 where u0 = x0 ·y0, u2 = x1 ·y1 and u1 = (x0+x1)·(y0+y1)−u0−u2.

It follows that x · y can be computed by performing three multiplications of t-bit integers
(as opposed to one multiplication with 2t-bit integers) along with two additions and two
subtractions. For large values of t, the cost of the additions and subtractions is insignifi-
cant relative to the cost of the multiplications. With appropriate modifications, u0, u1 and
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(x0 + x1) · (y0 + y1) can each be computed similarly. This procedure is continued on the
intermediate values until the size of the integers reaches the word size of the computing de-
vice, and multiplication can be efficiently accomplished. Due to the recursive nature of the
algorithm, a number of intermediate results must be stored which can add significant over-
head, and detract from the algorithm’s efficiency for relatively small integers. Combining
the Karatsuba-Ofman method with classical multiplication may have some practical signif-
icance. For a more detailed treatment of the Karatsuba-Ofman algorithm, see Knuth [692],
Koç [698], and Geddes, Czapor, and Labahn [445].

Another commonly used method for multiple-precision integer multiplication is the discrete
Fourier transform (DFT). Although mathematically elegant and asymptotically better than
the classical algorithm, it does not appear to be superior for the size of integers of practical
importance to cryptography. Lipson [770] provides a well-motivated and easily readable
treatment of this method.

The identity given in Note 14.18 was known to Karatsuba and Ofman [661].

§14.3
There is an extensive literature on methods for multiple-precision modular arithmetic. A
detailed treatment of methods for performing modular multiplication can be found in Knuth
[692]. Koç [698] and Bosselaers, Govaerts, and Vandewalle [176] provide comprehensive
but brief descriptions of the classical method for modular multiplication.

Montgomery reduction (Algorithm 14.32) is due to Montgomery [893], and is one of the
most widely used methods in practice for performing modular exponentiation (Algorithm
14.94). Dussé and Kaliski [361] discuss variants of Montgomery’s method. Montgomery
reduction is a generalization of a much older technique due to Hensel (see Shand and
Vuillemin [1119] and Bosselaers, Govaerts, and Vandewalle [176]). Hensel’s observation
is the following. Ifm is an odd positive integer less than 2k (k a positive integer) and T is
some integer such that 2k ≤ T < 22k, then R0 = (T + q0m)/2, where q0 = T mod 2
is an integer and R0 ≡ T2−1 mod m. More generally, Ri = (Ri−1 + qim)/2, where
qi = Ri−1 mod 2 is an integer and Ri ≡ N2−i+1 mod m. Since T < 22k, it follows that
Rk−1 < 2m.

Barrett reduction (Algorithm 14.42) is due to Barrett [75]. Bosselaers, Govaerts, and Van-
dewalle [176] provide a clear and concise description of the algorithm along with motiva-
tion and justification for various choices of parameters and steps, and compare three alter-
native methods: classical (§14.3.1), Montgomery reduction (§14.3.2), and Barrett reduction
(§14.3.3). This comparison indicates that there is not a significant difference in performance
between the three methods, provided the precomputation necessary for Montgomery and
Barrett reduction is ignored. Montgomery exponentiation is shown to be somewhat better
than the other two methods. The conclusions are based on both theoretical analysis and
machine implementation for various sized moduli. Koç, Acar, and Kaliski [700] provide a
more detailed comparison of various Montgomery multiplication algorithms; see also Nac-
cache, M’Raı̈hi, and Raphaeli [915]. Naccache and M’silti [917] provide proofs for the
correctness of Barrett reduction along with a possible optimization.

Mohan and Adiga [890] describe a special case of Algorithm 14.47 where b = 2.

Hong, Oh, and Yoon [561] proposed new methods for modular multiplication and modu-
lar squaring. They report improvements of 50% and 30%, respectively, on execution times
over Montgomery’s method for multiplication and squaring. Their approach to modular
multiplication interleaves multiplication and modular reduction and uses precomputed ta-
bles such that one operand is always single-precision. Squaring uses recursion and pre-
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computed tables and, unlike Montgomery’s method, also integrates the multiplication and
reduction steps.

§14.4
The binary gcd algorithm (Algorithm 14.54) is due to Stein [1170]. An analysis of the al-
gorithm is given by Knuth [692]. Harris [542] proposed an algorithm for computing gcd’s
which combines the classical Euclidean algorithm (Algorithm 2.104) and binary operations;
the method is called the binary Euclidean algorithm.

Lehmer’s gcd algorithm (Algorithm 14.57), due to Lehmer [743], determines the gcd of two
positive multiple-precision integers using mostly single-precision operations. This has the
advantage of using the hardware divide in the machine and only periodically resorting to
an algorithm such as Algorithm 14.20 for a multiple-precision divide. Knuth [692] gives a
comprehensive description of the algorithm along with motivation of its correctness. Co-
hen [263] provides a similar discussion, but without motivation. Lehmer’s gcd algorithm
is readily adapted to the extended Euclidean algorithm (Algorithm 2.107).

According to Sorenson [1164], the binary gcd algorithm is the most efficient method for
computing the greatest common divisor. Jebelean [633] suggests that Lehmer’s gcd algo-
rithm is more efficient. Sorenson [1164] also describes a k-ary version of the binary gcd
algorithm, and proves a worst-case running time of O(n2/ lgn) bit operations for comput-
ing the gcd of two n-bit integers.

The binary extended gcd algorithm was first described by Knuth [692], who attributes it to
Penk. Algorithm 14.61 is due to Bach and Shallit [70], who also give a comprehensive and
clear analysis of several gcd and extended gcd algorithms. Norton [934] described a version
of the binary extended gcd algorithm which is somewhat more complicated than Algorithm
14.61. Gordon [516] proposed a method for computing modular inverses, derived from the
classical extended Euclidean algorithm (Algorithm 2.107) with multiple-precision division
replaced by an approximation to the quotient by an appropriate power of 2; no analysis of
the expected running time is given, but observed results on moduli of specific sizes are de-
scribed.

The Montgomery inverse of a mod m is defined to bea−12t mod mwhere t is the bitlength
of m. Kaliski [653] extended ideas of Guyot [534] on the right-shift binary extended Eu-
clidean algorithm, and presented an algorithm for computing the Montgomery inverse.

§14.5
Let mi, 1 ≤ i ≤ t, be a set of pairwise relatively prime positive integers which define a
residue number system (RNS). If n =

∏t
i=1mi then this RNS provides an effective method

for computing the product of integers modulo nwhere the integers and the product are rep-
resented in the RNS. If n is a positive integer where the mi do not necessarily divide n,
then a method for performing arithmetic modulo n entirely within the RNS is not obvious.
Couveignes [284] and Montgomery and Silverman [895] propose an interesting method for
accomplishing this. Further research in the area is required to determine if this approach is
competitive with or better than the modular multiplication methods described in §14.3.

Algorithm 14.71 is due to Garner [443]. A detailed discussion of this algorithm and vari-
ants of it are given by Knuth [692]; see also Cohen [263]. Algorithm 2.121 for applying
the Chinese remainder theorem is due to Gauss; see Bach and Shallit [70]. Gauss’s algo-
rithm is a special case of the following result due to Nagasaka, Shiue, and Ho [918]. The
solution to the system of linear congruences x ≡ ai (mod mi), 1 ≤ i ≤ t, for pair-
wise relative prime moduli mi, is equivalent to the solution to the single linear congru-
ence (

∑t
i=1 biMi)x ≡

∑t
i=1 aibiMi (mod M) where M =

∏t
i=1mi, Mi = M/mi
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for 1 ≤ i ≤ t, for any choice of integers bi where gcd (bi,Mi) = 1. Notice that if∑t
i=1 biMi ≡ 1 (mod M), then bi ≡M

−1
i (mod mi), giving the special case discussed

in Algorithm 2.121. Quisquater and Couvreur [1016] were the first to apply the Chinese
remainder theorem to RSA decryption and signature generation.

§14.6
Knuth [692] and Bach and Shallit [70] describe the right-to-left binary exponentiation meth-
od (Algorithm 14.76). Cohen [263] provides a more comprehensive treatment of the right-
to-left and left-to-right (Algorithm 14.79) binary methods along with their generalizations
to the k-ary method. Koç [698] discusses these algorithms in the context of the RSA public-
key cryptosystem. Algorithm 14.92 is the basis for Blakley’s modular multiplication algo-
rithm (see Blakley [149] and Koç [698]). The generalization of Blakley’s method to process
more than one bit per iteration (Note 14.93(iii)) is due to Quisquater and Couvreur [1016].
Quisquater and Couvreur describe an algorithm for modular exponentiation which makes
use of the generalization and precomputed tables to accelerate multiplication in Zm.

For a comprehensive and detailed discussion of addition chains, see Knuth [692], where
various methods for constructing addition chains (such as the power tree and factor meth-
ods) are described. Computing the shortest addition chain for a positive integer was shown
to be an NP-hard problem by Downey, Leong, and Sethi [360]. The lower bound on the
length of a shortest addition chain (Fact 14.102) was proven by Schönhage [1101].

An addition sequence for positive integers a1 < a2 < · · · < ak is an addition chain for
ak in which a1, a2, . . . , ak−1 appear. Yao [1257] proved that there exists an addition se-
quence for a1 < a2 < · · · < ak of length less than lg ak + ck · lg ak/ lg lg(ak + 2)
for some constant c. Olivos [955] established a 1-1 correspondence between addition se-
quences of length l for a1 < a2 < · · · < ak and vector-addition chains of length l+ k − 1
where vl+k−1 = (a1, a2, . . . , ak). These results are the basis for the inequality given in
Fact 14.107. Bos and Coster [173] described a heuristic method for computing vector-
addition chains. The special case of Algorithm 14.104 (Algorithm 14.88) is attributed by
ElGamal [368] to Shamir.

The fixed-base windowing method (Algorithm 14.109) for exponentiation is due to Brick-
ell et al. [204], who describe a number of variants of the basic algorithm. For b a positive
integer, let S be a set of integers with the property that any integer can be expressed in base
b using only coefficients from S. S is called a basic digit set for the base b. Brickell et al.
show how basic digit sets can be used to reduce the amount of work in Algorithm 14.109
without large increases in storage requirements. De Rooij [316] proposed the fixed-base
Euclidean method (Algorithm 14.113) for exponentiation; compares this algorithm to Algo-
rithm 14.109; and provides a table of values for numbers of practical importance. The fixed-
base comb method (Algorithm 14.117) for exponentiation is due to Lim and Lee [767]. For
a given exponent size, they discuss various possibilities for the choice of parameters h and
v, along with a comparison of their method to fixed-base windowing.

§14.7
The signed-digit exponent recoding algorithm (Algorithm 14.121) is due to Reitwiesner
[1031]. A simpler description of the algorithm was given by Hwang [566]. Booth [171]
described another algorithm for producing a signed-digit representation, but not necessar-
ily one with the minimum possible non-zero components. It was originally given in terms of
the additive group of integers where exponentiation is referred to as multiplication. In this
case,−g is easily computed from g. The additive abelian group formed from the points on
an elliptic curve over a finite field is another example where signed-digit representation is
very useful (see Morain and Olivos [904]). Zhang [1267] described a modified signed-digit
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representation which requires on average t/3multiplications for a square-and-multiply al-
gorithm for t-bit exponents. A slightly more general version of Algorithm 14.121, given by
Jedwab and Mitchell [634], does not require as input a binary representation of the exponent
e but simply a signed-digit representation. For binary inputs, the algorithms of Reitwiesner
and Jedwab-Mitchell are the same. Fact 14.124 is due to Jedwab and Mitchell [634].

String-replacement representations were introduced by Gollmann, Han, and Mitchell [497],
who describe Algorithms 14.128 and 14.130. They also provide an analysis of the expected
number of non-zero entries in an SR(k) representation for a randomly selected t-bit expo-
nent (see Note 14.132), as well as a complexity analysis of Algorithm 14.130 for various
values of t and k. Lam and Hui [735] proposed an alternate string-replacement algorithm.
The idea is to precompute all odd powers g, g3, g5, . . . , g2

k−1 for some fixed positive in-
teger k. Given a t-bit exponent e, start at the most significant bit, and look for the longest
bitstring of bitlength at most k whose last digit is a 1 (i.e., this substring represents an odd
positive integer between 1 and 2k− 1). Applying a left-to-right square-and-multiply expo-
nentiation algorithm based on this scanning process results in an algorithm which requires,
at most, dt/kemultiplications. Lam and Hui proved that as t increases, the average number
of multiplications approaches dt/(k + 1)e.
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